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ABSTRACT

The formal specification language Spec is used for writing black-box specifications
for large software systems. These black-box specifications describe the interface
between a system and its users, as well as internal interfaces between modules. Systems
analysts use specifications written in Spec to verify the customer’s requirements during
the development of a software system.

This thesis demornsTates the feasibilii, of designing and impiementing a synuax
directed editor for a subset of the specification language Spec. The editor is a software

ool for writing Spec specifications that ensures syntactic correctness of such specifi-
cations. The syntax directed editor is created using the Synthesizer Generator, a
Computer-Aided Software Engineering (CASE) tool for generating language-based
editors. The specification for the editor is written in the Synthesizer Specification
Language (SSL) which is based on an attribute grammar. The software tool developed in

this thesis supports the Requirements Analysis phase of the software development cycle.
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L. INTRODUCTION

A. OVERVIEW

Spec is a formal specification language designed to write black-box specifications of
software systems. These black-box specifications describe the interface between a
system and its users as well as internal interfaces between modules. Specifications
wriiten in Spec are used by systems analysts to verify the customer’s requirements. The
specification is then translated into an appropriate programming language (such as Ada)
by programmers.

Currently, Spec is a research tool with the potential to become an industry standard in
software development. An eventual goal is to create an integrated environment of
software tools for Spec. These tools would include an editor, type checker, consistency
checker, inheritance expander, pretty printer, test oracle, diagram generator and a
ranslator to Ada.

A syntax directed editor is the primary tool of such an integrated environment. The
user is guaranteed a svntactically correct Spec specification at the end of each editing
session. By ensuring syntactic correctness as the specification is being designed/edited,
the overall time spent designing the system is reduced.

This thesis discusses the development of SPECDEF, a syntax directed editor for a
subset of the Spec specification language. Chapter II gives a general description of a

svntax directed editor and compares two primary editor generator systems. Chapter ITI is




a description of the Spec language. The complete Spec grammar appears in Appendix A.
Chapter IV details the concepts behind the Synthesizer Generator, design decisions, and a
practical approach to designing a syntax directed editor specification. The specification
files for the SPECDEF editor appear in Appendix B. A user’s manual for the SPECDEF
editor appears in Appendix C, and a listing of all editor system commands appears in

Appendix D.

B. DESCRIPTION OF SOFTWARE ENGINEERING PRINCIPLES

Computers are playving an increasingly large role in our lives. Many manufacturing
processes are being automated. retail and grocery stores have computerized pricing and
inventory svstems. banks are providing automatic teller machines, travel agents make our
tlane reservations through computers, etc. In order for these and other computer systems
to perform useful tasks, reliable and efficient software is required.

Software engineering applies scientific and mathematical principles to the develop-
ment of software in order to make computers useful to people. Software consists of the
actual programs, at1 gocumentition and user’s guidces, opcrating piccedures and test cases
that are associated with a computer-based system. A primary goal of software engi-
neering i< the development of effective scientific methods for producing software that
meets the customer’s schedule and budget constraints while satisfying all his require-
ments for the software syvstem. [Ref. 1]

Computers can perform tasks that are repetitious, too time consuming, Or too
complicated for people to do manually, and they can usually perform those tasks faster,

with greater reiiability, more efficiently and at a lower cost than people can. In order for
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computers to be useful, the software system designed for the customer must be able to
perform all functions required by the user in a correct and efficient manner. Any failure
of the system to operate correctly could be costly in terms of lives, equipment. and
money. Software systems should not only be "correct”, i.e., conform to the specification,
but also should perform :he functions desired by the customer. Correct but inappropriate
systems are sometimes built because the software developers did not understand the
user's needs, or the software cannot adapt to changes in those needs. [Ref. 1)

Hardware prices have decreased by about 50% roughly every two years. This in turn
has triggered a demand for larger, more sophisticated computer applications. It 1s
impossible for a single person to understand or to build large and complex software
svstems. Therefore, a software development organization is needed. The system must be
organized as a set of modules that are small enough to be developed by a single person.
Each of the developers in the organization must communicate with the other developers,
either directly or wurough documentation. This documentation must be precise so that all
developers on the project team have a complete and correct under-standing of the
interface between the module(s) they are developing. In addition to this formal
documentation. communication 1 extremely important, particularly in large prejects,
where project members come and go. [Ref. 1]

The software development process consists of a cycle of qualitative activities:
requirements analysis, functional specification, architectural design, implementation. and
evolution. The development will proceed most efficiently if these activities are per-

formed in a pipeline fashion. However, each activity does not necessarily end when the




next begins. Ofte~. insights are gained at later stages that trigger modifications or
extensions i~ earlier results. Therefore, feedback is essential. The relationship between
activities of the software development cycle is illustrated in Figure 1.

Requirements analysis is the process of determining and documenting the customer’s
needs. The purpose of the system, as w¢ll as any constraints on its development, is
determined at this stage. A systems interface is proposed and formalized in the
functional specification stage. This interface only describes those aspects of the system
behavior that are visible to the user or to other external systems. The system is then
decomposed into modules in the architectural design phase. Internal interfaces, i.e., those
not visible to the user, are defined here. Implementation is the production of a program
for each of the modules. The data structures and algorithms used within each module are
defined here. Finally, the evolution, or repair process, allows for adaptation of the
system to changing needs of the customer. Any discrepancies between the specification
and the implementation that are discovered after system delivery are repaired here, and
the capabilities of the svstem are expanded as new requirements are discovered. This
evolution requires repeating the previous four steps of the software development cycle.
[Ref 1]

The SPECDEF editor will be useful mostly in the requirements analysis phase of the
software development cycle. and to a lesser extent in the functional specification and

architectural design phases.
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Software Development Cycle

Thorough analysis and testing of each module is absolutely necessary if a "correct”

system 1s to be developed. A project database should be utilized to record and distribute

ail information about the state of the development process. This database will contain a

variety of documents, including the

designs. the code. test cases and results,

requirements, designs, justifications for those

user’s manuals, the schedule of the development

project. work assignments, etc. The larger the system, the larger the database, and the

greater the need for a database management system. For engineering applications, a

specialized engineering database system is required to efficiently manage the project

database. This is a relatively new development, and mature systems are not yet widely

available. Future versions of SPECDEF should interface to this design database. [Ref. 1]




C. COMPUTER-AIDED SOFTWARE ENGINEERING (CASE)

The time spent in the requirements analysis, functional specification and architectural
design stages of the software development cycle has been greatly reduced by the
advancements made in computer-aided software engineering (CASE) tools. These tools
assist the systems analyst and software engineer in specifying the system’s requirements
and design. Many of the design and development problems inherent in medium to large
software projects are reduced or eliminated by the use of CASE tools. [Ref. 2]

Some CASE tools can automatically generate code from the software design
specification. Two benefits are achieved from this. First, the implementation time is
substantially reduced since the code (or at least part of it) is being generated automa-
tically. Secondly, the software engineer may feel more confident about the quality of the
generated code because it was produced by a software tool that has itself been thoroughly
tested and debugged. [Ref. 2]

Trulv generalized code generation is not available in any of today’s general-purpose
tools. However, specialty development tools that focus on a particular type of software,
such as user interface design tools, are available that will generate code. This thesis will
discuss the use of one such tool, the Synthesizer Generator, which generates a syntax
directed editor program. This generated program is in fact another example of a CASE
tool.

In general, CASE tools are designed to increase the productivity of systems analysts
and software enc'r: rs. Many of these tools are actually requirements and design

specification editors tha: orovide output in specific formats, often graphically oriented,




that can be read and understood by end-users and developers alike. They eliminate the
drudgery of drawing and redrawing data flow diagrams, module hierarchy charts, etc.,
that often change as the project development proceeds. Time is saved and formats are
consistent. Future versions of the SPECDEF editor should interface with tools for

generating such diagrams and other summary information. [Ref. 2]

D. FOURTH-GENERATION LANGUAGES

The term "fourth-generation language” can be looked at in two different ways. Some
authors use the term to refer to application generator programs. Applications generators
are software tools that take a design specification as input and produce compilable code
as output. When used in this context, the "fourth-generation language"” in not always a
programming language in the sense that a programming language is intended to describe
a program [Ref. 3]. This context includes many CASE tools, such as program generators.
Fourth-generation languages in this context are sometimes thought of as higher-level
focused languages that provide mechanisms for accessing data bases [Ref. 2]. Many
software professionals think of fourth-generation languages as a form of CASE [Ref. 2].

Other authors, when referring to "fourth-generation languages,” mean a particular
class of modern programming languages, including Ada. Fourth-generation
programming languages provide mechanisms for data abstraction. An encapsulation
facility supports the separation of the specification and definition of data structures,
information hiding. 2pd name access by mutual consent. A facility for passing messages
between concurrent tasks to maintain synchronization and communication supports

concurrent programming. [Ref. 3]




A software crisis developed in the mid 1970’s because software development had
become labor intensive rather than a labor-saving activity. There were problems with
responsiveness of computer systems to customers’ needs, reliability of software, escal-
ating software development costs, maintainability of software systems, timeliness of
development of software systems, transportability of software from one operating envi-
ronment to another, and efficiency of the software in terms of processing time and
memory space. Software systems were becoming increasingly larger and more complex.
The most popular programming languages at that ime, FORTRAN and COBOL, did not
reflect newly developed software engineering principles and were not suitable for
embedded computer systems. An embedded computer is one that is a component of a
larger system, e.g., a guidance computer on a missile, or a target tracking computer in a
weapon system, etc. [Ref. 4]

The United States Department of Defense (DoD) recognized this software crisis.
There was no standardization in DoD projects as far as programming languages were
concerned. In response to these problems, DoD commissioned a worldwide language
design competition with the goal of developing a single high-order language suitable for
use in embedded computer systems as well as conforming to other well-defined require-
ments. The result of that competidon was Ada. It is designed specifically for large,
software-intensive, real-time embedded computer systems. However, it is suitable for
other application areas as well. Ada both embodies and enforces modern software

engineering development principles, such as structured constructs, information hiding.




and abstraction. Ada is now a prime language in the computing industry, as well as being
the required language for embedded computer systems in DoD projects. [Ref. 4]

Both viewpoints on the definition of a fourth-generation language are applicable to
this thesis. In the first sense, that of an application generator, the Synthesizer Generator
is a CASE tool that takes as input an editor specification written in a fourth-generation
language and outputs compilable C code, which is then compiled into an executable
editor program. In the second sense, that of a class of programming languages, the
purpose of the editor produced by the Synthesizer Generator is to support the early stages
of software design for eventual translation in to a fourth-generation language, specifically

Ada.




II. BACKGROUND

A. GENERAL DESCRIPTION OF A SYNTAX DIRECTED EDITOR

A syntax directed editor is a software tool for creating or modifying programs in such
a wa.y that correct syntax is always maintained. It will not allow syntactically incorrect
constructs to be entered. Generally, the editor is designed for one specific programming
language, although editors exist that allow different languages to be programmed into i.
Often, the editor is the prime component of a set of programming tools that make up an
integrated programming environment.

Most syntax directed editors are screen-based, i.e., program text is entered at the
location indicated by the display cursor, and the screen display is automatically updated,
just as most text editors do. But text editors, as the name implies, only allow modifi-
cation of the rext, whereas syntax directed editors allow modification of the syntacric
structure of the program, as well as the text itself. As the text is entered, it is checked for
syntactic correctness, and errors are immediately detected and appropriate messages
displayed to the user. This prevents the user from writing programs that are syntactically
incorrect. [Ref. 5,6]

In most syntax directed editors, text is entered by creating a template, or a skeleton,
of some syntactic construct, and filling in the detail later. These templates form a parse
tree and only allow syntactically correct constructs to be generated. The user selects a

node of the parse tree that contains a non-terminal to fill in the detail. This non-terminal
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can be expanded into valid syntactic alternatives. Some editors will display a list a valid
choices for the current node. The user can also enter directly the desired text, and if the
entry is not syntactically correct, the editor will then display a list of alternatives to the
user. This process, known as programming by selection, is partic-ularly beneficial in a
learning environment because the time to learn the rules of the language (the syntax) is
reduced. Figure 2 is an example of the programming by selec-tion process for a

compound statement using an arbitrary language. [Ref. 5,6]

Program Statement Transformation Selected

begin <stmntlsr> end

<stmntlst> —— <stmntist>; <stmnt>
begin <stmntlsr>; <stmnr> end

<stmntlst> — <stmnr>
begin <stmnr>;<stmnr> end

<stmnt>-—— <assign_stmnt>
begin <assign_stmnt>; <stmnt> end

<assign_stmnt> —s x '= 5
begin x .= §; <stmnr> end

<stmnt>—— <proc call>
beginx '= 5; <proc_call> end -

<proc_call>—— p(x)
begin x .= 5: p(x) end

Figure 2
Programming by Selection
Since visual display units (VDUs) generally can only display 24 lines of text at a
time, it is impossible to display much of the parse tree graphically on the screen. How-
ever, an overall view of the program (or at least a larger portion of it) is possible by

unparsing the tree, i.e., displaying text down to a certain level of detail and omitting the
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remaining detail. The omitted portions are commonly replaced by ellipses ("...") so the
overall view of the structure remains intact. The user may then select a particular portion
on which to zoom in and display greater detail. [Ref. 5]

Changes are made to the structure of the program using the central commands of the
editor. The editor might allow changes in terms of operations on the branches of the
parse tree, by matching subtrees and substitution, or by entering arbitrary text and repar-
sing the tree. For example, suppose the user wanted to rename a variable "red" to "blue".
Variables are a construct of the language, i.e., a subtree. Changing the symbol of this
subtree from "red” to "blue" does not affect other text strings in the parse tree that contain
the substring "red”, i.e., a variable "fred" is not changed to the variable "fblue". This
kind of structural editing (as opposed to simple text editing) avoids unintended changes
to the program. If this were not the case, i.e., if such a substitution replaced every
instance of the substring "red" throughout the program, the result would be potentially
disastrous. [Ref, 5]

Structural commands insert, copy, move and delete subtrees within the parse tree.
Subtrees can also be clipped, or contracted into a non-terminal symbol of the grammar.
These clipped pieces are saved, and can be reused at other locations using a special form
of the insert command. The benefit of this facility is the time saved by copying or
moving whole subtrees from one location in the parse tree to another rather than having

to re-construct the subtree at the new location. [Ref. 5]
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Most syntax directed editors incorporate a pretty-printing function. This can be
reflected on the display screen as well as on the hardcopy output. Pretty-printing might
be a selectable function, or it might be done automatically. [Ref. 5]

A syntax directed ediior can also maintain some semantic constraints. For example,
every variable that is used must be declared. Such facilities are useful for preventing
some classes of errors.

The SPECDEF editor incorporates some of the facilities mentioned above. It is a
screen-oriented hybrid editor that modifies the structure of the edited object by template
insertion as well as direct text entry. The valid choices for template insertion are
displayed to the user at each node of the parse tree when that node is selected. Textual
changes to one consiruct do not affect the same text in other constructs. Sthtrees can be
clipped and copied or moved to other locations in the parse tree. Pretty-printing is
automatic in the sense that indentation and line breaks are designed into the unparsing
schemes.

SPECDEF does not. however, have any provisions for semantic checking of variable
declarations or for elision of detail into ellipses. Future versions of SPECDEF will be
integrated with a type checker and a consistency checker that will help maintain semantic
constraints. Provisions for elision of detail may also be incorporated in future versions of

the SPECDEF editor.

B. SYNTAX DIRECTED EDITOR GENERATORS
An important area of research in computer science is that of language-based

programming environments. Probably the most significant programming tool in such an
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environment is a syntax directed editor. Integrating a syntax directed editor with
execution and debugging facilities creates a powerful programming tool. Several such
systems have been developed, e.g., GANDALF [Ref. 7,8], and the Comell Program
Synthesizer [Ref. 9]. The Synthesizer Generator [Ref. 10,11] is an outgrowth of the
Cornell Program Synthesizer.

Both GANDALF and the Synthesizer Generator have the capability to create editors
for languages other than programming languages, such as verification languages or
specification languages. The Synthesizer Generator was selected as the primary tool for
this thesis because of the availability of mutual support with a parallel research project in
prototyping languages currently under development at the Naval Postgraduate School.
4130, at thi< stage of research, there was not a need to generate a multiple user environ-
ment such as GANDALF generates. The discussion on GANDALF is offered for
purposes of comparison. Follow-on research to this thesis may wish to investigate the

use of GANDALTF to create a multiple user environment.

1. The GANDALF System
The GANDALF System is a software tool that generates integrated environments
that are language-specific. Two different kinds of environments are possible using this
system--programming environments and software development environments. A
programming environment is a highly interactive knowledge-based environment for a
single programmer working on a small project. A software development environment,
which is the primary purpose of the GANDALF project, is one in which multiple

programmers work on large projects. [Ref. 8]
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The heart of the GANDALF project is designed around the ALOE editor
generator system, which stands for A Language Oriented Editor. A language oriented
editor is also known as a syntax directed editor or a structure editor in the literature.
ALOE is actually the common kernel that is used by all syntax directed editors generated
with this system. A specific instantiation of a syntax directed editor is known as an
ALOE editor. ALOEGEN is an ALOE editor that is used to create the syntactic
descriptions of a language that can then be used in conjunction with ALOELIB, which is
library support to add semantic actions and additional commands, to create a syntax
directed editor for the specific language. [Ref. 7]

The user interface of all generated ALOE editors are tree-oriented full-screen
interfaces. There is a set of language-independent commands, such as subtree deletion
and cursor motion, as well as a set of language-specific operations that represent
structures of the language, such as Pascal while statements or Ada packages. [Ref. 7]

As a programmer creates or edits a program with an ALOE, the program is
displaved much the same way as a text editor would display it. But the representation is
based on the structure of the program rather than simply as a string of characters. This
structure 1s an abstract syntax tree. The programmer moves about the program by way of
this tree structure. The cursor will highlight an entire structural unit, such as a Pascal if-
then-else construct, or a specific non-terminal within the structural unit, rather than just a
single character. Operations are performed on the structure of the program, i.e., insertion

or deletion of structural units, or expansion of non-terminals. [Ref. §]




As stated earlier, the primary focus of the GANDALF project is the generation of
software development environments that would support multiple programmers working
on a large project. This type of environment also has an ALOE editor as its basis, but in
addition provides a system version control editor and a project management editor to
solve programming-in-the-large and programming-in-the-many problems respectively.
These problems are significantly harder to solve because of the interaction required
between various modules developed by different programmers on the team. Research is

continuing in this area. [Ref. 8]

2. The Synthesizer Generator

The Synthesizer Generator is a system that creates a language-specific editor from
a specification of the language’s abstract syntax, context-sensitive relationships, display
format, concrete input syntax, and transformation rules for restructuring objects. The
specification language for the Synthesizer Generator, SSL (for Synthesizer Specification
Language). is based on the concept of an artribute grammar. An attribute grammar is an
extension of a context-free grammar. The extensions are the artributes which have been
attached to the nonterminal symbols. The value of these attributes is defined by arrribute
equations. This mechanism can specify how widely separated parts of a derivaticn tree
can be constrained by the context of the rest of the tree. [Ref. 10]

Specifications written in SSL are different from specifications written for other
systems that are based on attribute grammars. This is because SSL has several

innovations, e.g., the capability to merge abstract-syntax definitions and user-defined
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attributes, a notation that allows specifications to be broken into separate modules, and
the manner in which the parser is incorporated into the system. [Ref. 10]

There are two basic components that comprise the Synthesizer Generator: (1) a
translator that converts SSL specifications into various tables as output, and (2) an editor
kernel with an attributed-tree data type and a driver for manipulating atwributed trees
interactively. The kernel executes operations on the current tree according to keyboard
and/or mouse commands. A shell program named sgen invokes the translator and pro-
duces the syntax directed editor for the specified language from the tables that are output
from the translator. [Ref. 11]

Objects being edited with an editor produced by the Synthesizer Generator are
represented as attributed denvation trees. Each modification to the object being edited
causes the attribute values throughout the tree to be updated. If a modification results in
the violation of any context-dependent constraints, the display is annc ated with error
messages to provide the user with immediate feedback. [Ref. 11]

The editor produced by the Synthesizer Generator displays constructs of the
language as templates, or predefined, formatted patterns. Non-terminals within
constructs can be thought of as placeholders where additional insertions can be made
through a transformation equation. When the user selects a subterm (i.e., a placeholder)
a menu of possible transformations i< listed. A transformation is invoked either by
typing the name or making a menu selection with a mouse. Transformation definitions
are type-checked when the SSL specification is compiled into an editor, so it is

impossible for a transformation to introduce context-free syntax errors. [Ref. 11]




In addition to the transformations, which are language specific, every editor
generated by the Synthesizer Generator contains language independent system commands
such as cut-to-clipped and paste-from-clipped. The cut operation differs from ordinary
text editors, which would delete the selected text and leave the cursor at that position. In
the syntax directed editor, the cut operation replaces the selected subterm with a place-
holder, thus maintaining the correctness of the context-free syntax. The paste operation,
conversely, replaces the placeholder term with the previously cut subterm.[Ref. 11]

The Synthesizer Generator is written in C and runs under the Berkeley UNIX
svstem. Editors can be generated for specific windowing systems, such as VIDEO, SUN,
and X-Windows. There are a2 number of selectable optons when invoking sgen that
affect the method of generation and the capabilities of the generated editor. For a

complete hst of these options, refer to Appendix B of [Ref. 11].
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III. AN OVERVIEW OF THE SPEC SPECIFICATION LANGUAGE

A. THE PURPOSE OF SPEC

The functional specification stage of the software development cycle gives a black-
box specification of the software project, i.e., only the interface between modules is
described, not the inner workings. Spec is a formal language for writing such black-box
specifications, as well as for specifying the internal interfaces of the proposed system
during the architectural design phase. [Ref. 12]

A precise, formal specification of a proposed software system is essential in order to
ensure that everyone on the development team understands and agrees with the interpre-
tation of the user’s requirements. Programming languages, such as Ada, are formal, but
because they are designed for describing algorithms and data structures rather than the
actual behavior of a module, they are not suited for writing black-box specifications.
Spec is designed specifically for defining the behavior of software modules. The formal
notation of Spec provides the precision needed to prevent the ambiguity inherent in
English and other informal notations. [Ref. 12]

Spec uses the event mode! to define the behavior of a proposed system. The event

model describes computations in terms of modules, events and messages.

A module is a black box that interacts with other modules only by sending and
receiving messages. An event occurs when a message is received by a module at a
particular instant of ime. A message is a data packet that is sent from one module
to ancther. (Berzins, 1987, p. 2)




Modules can model either software components, or external systems such as peripheral
hardware or even the user. Messages are accepted by a module one at a time. The length
of a message is arbitrary. It is assumed that every message sent eventually arrives at its
destination. [ Ref. 1]

The sequence of inessages that are received by a module determine what kind of
response will occur. Modules are classed as mutable or immutable depending on how
the module reacts to messages. If the response of the module can depend on one or more
messages received prior to the most recently received message, the module is mutable.
Mutable modules behave as if they had internal states or memory. If the module’s
response to every possible message depends solely on the most recently received
message, the module is immutable. A module is immutable if and only if it is not

mutable. Immutable modules behave more like mathematical functions. [Ref. 12]

B. MODULE DESCRIPTIONS
Five types of modules can be specified in Spec: definitions, functions, state

machines, abstract data types, and instances of generic modules.

1. Definition Modules
Definition modules contain descriptions of concepts that are not unique to any
particular function, machine, or type declaration, but are insiead available to be shared
among many modules through importation. Only concepts may be declared in definition
modules. Definition modules may also import other modules. [Ref. 1)
Concepts describe the logical assertions that define the behavior of modules.

They can define constant symbols, symbolic type names, predicates (relationships) and




functions (attributes). These conceptual representations are introduced by the keyword
CONCEPT. Concepts can be explicitly exported to other modules through an EXPORT
clause, as well as imported from other modules through an IMPORT clause (provided it
has been explicitly exported from the module in which it is defined). [Ref. 1]

Definition modules form the primary subset of the requirements analysis phase of
the software development cycle. In requirements analysis, a model of the problem
domain is created to record facts about the problem and the environment of the proposed
svstem needed by the developers in later stages. These facts are represented as concepts
contained in definition modules. The SPECDEEF tool developed in this thesis treats the

subset of the Spec language used in this process.

2. Function Modules

Function modules are one of the three primary module types in Spec (the others
being machine modules and rype modules). A function module behaves like a
mathematical function in that it calculate the value on a data type. [Ref. 12]

A function usually will perform only one task or service, so they will only accept
anonymous (i.e., unnamed) messages. Messages in a function module define the
"operations” that the functon may perform. They are introduced by the keyword
MESSAGE. [Ref. 1,12,13]

Each message, or operation, returns a value in the form of a REPLY message. A
variety of responses can be defined with WHEN clauses, which specify preconditions
similar to the Pascal case statement or the switch statement in C. If none of the WHEN

clauses apply. an OTHERWISE clause handles the remaining cases. If a message




response is to report an abnormal condition, a REPLY EXCEPTION message is returned.
Postconditions that must be satisfied by the outgoing message are specified with a
WHERE clause. [Ref. 1,12,13]

To illustrate the above concepts, Figure 3 depicts a function f that accepts an
anonymous message consisting of an input variable of type typel. If the input variable
satisfies precondition casel, the retuned value is the output variable of fype2, with a
postcondition that must also be satisfied. If the input variable satisfies precondition
case2, an abnormal situation exists, so the returned value is the exception failurel. If
neither of the preconditions can be met, then the OTHERWISE clause takes effect and an

exception failure2 is returned.

—
FUNCTION 7

MESSAGE (input-var : typel)
WHEN case! (input-var)
REPLY (output-var : rype2)
WHERE postcondition (output-var, input-var)
WHEN case2 (input-var)
REPLY EXCEPTION failurel
OTHERWISE REPLY EXCEPTION failure?

| END

Figure 3
Example of a Function Module

3. Machine Modules
Machines are mutable modules that have an internal state. The conceptual model
of that state describes the behavior of the module, rather than the messages received in
the past. The keyword STATE introduces the declaration of the components of the

conceptual model of the state, and any restrictions on the set of meaningful states are




given in an INVARIANT clause. Restrictions on the initial state are given in an
INTTIALLY clause. Input stimuli to the machine which invoke actions are defined in
MESSAGE clauses. The actions can be any combination of a REPLY, a REPLY
EXCEPTION, one or more SEND statements, or a TRANSITION to a new state.
Transitions are given as equations that describe the change either forwards or backwards
in ume, whichever is simpler (i.e., in terms of the state before the transition or in terms of
the state after the transition). Messages can be sent to modules other that the origin of the
incoming message. This is done using a SEND statement instead of a REPLY. There
can be any number of SEND statements, but only one REPLY statement. [Ref. 1,12,13]
The example in Figure 4 depicts a machine called buffer which has a state model
consisting of a single-valued stare-var of type tvpel. The statements INVARIANT true
and INITIALLY true indicate there are no restrictions on the states of the machine. If the
stimulus read is sent to the machine, the reply is the current value of state-var. If the
stimulus update is sent with the parameter new-value of the type fypel, the state of the
machine is changed by assigning the new-value to state-var. When the transition is

complete, the reply message done is sent to the initiator of the stimulus.
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MACHINE buffer
STATE (state-var : typel)
INVARIANT rrue
INITIALLY true

MESSAGE read
REPLY (result : typel)
WHERE result = state-var

MESSAGE update (new-value : typel)
TRANSITION state-var = new-value
REPLY done

Figure 4
Example of a Machine Module

4. Type Modules

Abstract data types are defined in type modules. An abstract data type consists of
a set of values and a set of primitive operations that operate on those values. In the type
module each operation is represented by a named message. The data type is described in
terms of a conceptual model rather than the actual data structure used in the implemen-
tation. The implementation of the data type can change to improve performance, but the
conceptual model will still be valid. The keyword MODEL introduces the tuple that
represents each instance of the data type. The components of the tuple can have
restrictions specified in an INVARIANT clause. The effects of the operations can be
described by CONCEPT clauses. Type modules can be either mutable or immutable.

[Ref. 12]




5. Instance Modules

An instance module is used to make an instance or partial instantiation of a
generic module. This is useful for renaming concepts in other modules before importing
or inheriting them. For example, if module m contains a concept ¢ that you wish to
import, but you have already defined a local concept using the same name and argument
types but with a different meaning, one of the two concepts will have to be renamed. If
the name you have chosen for your local concept is a good one, then it is better to rename
the imported concept. To do this, you must first create a new instance ot module m, say
new-m, in which you declare a renaming of concept ¢ to new-c. The renamed concept
can now be imported from the new instance of module m (i.e., module new-m). This

example is illustrated in Figure 5.

INSTANCE new-m=m
RENAME ¢ AS new-c
END

-- The renamed concept can now be imported as follows:
IMPORT new-c FROM new-m

Figure 5
Using an Instance Module to rename a concept

C. OTHER FEATURES

1. Concepts used as Subprograms
Concepts, which were briefly described above, are of great benefit in simplifying

descriptions of complex software systems. Long expressions in predicate logic, for




example, can be decomposed into several concepts that are easily understood individ-
ually, making the overall expression more understandable. Concepts in Spec are
analogous to subprograms in a programming language.

2. Inheritance in Spec

Spec has an inheritance mechanism that allows constraints that are common to the
interface of several modules to be specified. This is particularly useful in specifying
large software systems because it helps achieve a consistency in the interface of several
modules. [Ref. 12]

Inheritance applies to entire modules. An inherit clause is introduced with the
keyword INHERIT followed by the name of the module being inherited. The effect is
the same as if all the concepts, messages, models or states of the inherited module were
copied verbatim into the current module. Any specific concept, message, model or state
may be excluded from being inherited into the current module through a HIDE clause.
To avoid name conflicts, messages or concepts can be "renamed” to a "new" name with a
RENAME clause. [Ref. 13]

There are restrictions on which type of modules can be inherited by which other
types of modules. Definition modules may only inherit other definition modules.
Function modules may inhent other functions and definition modules. Machine modules
may inherit other machines, function modules and definition modules. Type modules
may inherit other types, function modules and definition modules. Any of these four type
of modules may inherit an instance module provided the base module that the instance

instantiates is of a type appropriate to the module that is doing the inheriting. [Ref. 13]




A more detailed discussion of inheritance in Spec can be found in [Ref. 13].

Closely related to inheritance is the mechanism for importing and exporting
concepts from one module to another. Only CONCEPTS may be imported and exported.
An IMPORT clause is used to allow concepts defined in other modules to be made a
"part of " the current module. An EXPORT clause allows concepts defined in the current
module to be available for explicit importation into other modules. A concept cannot be
impoited unicss it has been explicitly exported by the module in which it is defined. This
importation and exportation mechanism, as well as the inheritance mechanism, is useful
for logical grouping of related concepts into a single module in support of a modular
construction of large software systems. [Ref. 1,12,13]

The SPECDEF editor is able to declare INHERIT, IMPORT, and EXPORT
clauses for definition modules. However, there is no capability for checking that the
named module in an INHERIT clause exists, or whether a concept named in an IMPORT
clause has been EXPORTed by the named module. It is therefore up to the user to ensure

that such is the case.

D. COMPLETE DESCRIPTION OF SPEC
The foregoing discussion on Spec is necessarily brief For a more thorough
description see [Ref. 121 and Chapter 2 of [Ref. 1]. The grammar of the Spec language is

included at the end of this thesis as Appendix A.




IV. DESIGN OF THE SYNTAX DIRECTED EDITOR FOR SPEC

A. GOALS
1. Short Term
The initial short term goals for this research project were as follows: (1) gain an
understanding of how to write a specification for a syntax directed editor in terms of the
Synthesizer Generator specification language, SSL, and (2) implement a working model
of the syntax directed editor for a subset of Spec. In order to achieve these goals as
quickly as possible, it was decided to limit the specification to syntax editing only and

forego any semantic checking.

2. Long Term
The long term goals (beyond the scope of this thesis) are to (1) implement the
editor for the complete Spec grammar, and (2) integrate the editor into a complete
programming environment for Spec. This environment will include the editor, a type
checker [Ref. 15], a pretty printer [Ref. 16], a consistency checker, an inheritance
expander, a test oracle, a diagram generator, and translator to Ada. With the exception of
the pretty printer and an initial version of both the editor and the type checker, the tools

mentioned above have yet to be developed.

B. CONCEPTS FOR USING THE SYNTHESIZER GENERATOR
To effectively utilize the Synthesizer Generator, several terms and concepts that are

perhaps unfamiliar to most readers must be understood. An SSL editor specification is




built around three different but related grammars: the abstract syntax grammar, the
concrete syntax grammar, and the unparsing scheme. The abstract syntax defines the
basic set of context-free grammar rules that define the language, excluding any keywords
in context (hence, context-free). The concrete syntax defines the input grammar for text
entry, and the productions of this grammar do take keywords into account. The
unparsing scheme defines the formatting rules for the display representation of the
language, including keywords, punctuation, and indentation. [Ref. 10,11]
1. Attribute Grammar

The Synthesizer Generator is based on the concept of an attribute grammar. As
mentioned previously, an attribute grammar is a context-free grammar that is extended by
attaching arrributes to the nonterminal symbols of the grammar and by defining arntribute
equations that determine the value of those attributes. Each attribute is a piece of
information that describes some semantic property of the nonterminal. For example, a
variable could have attributes such as rype, value, length, etc. Each production in the
grammar can have a set of attribute equations.

There are two disjoint sets of attributes of a nonterminal: synthesized attributes
and inherited attributes. Svnthesized attributes are associated with the left-hand-side
nonterminal of a production, while inherited attributes are associated with nonterminals
of the right-hand-side of a production. That is, the left-hand-side synrhesizes its attribute
values from the right-hand-side attributes, and the right-hand-side inherits its attribute

values from the left-hand-side attributes. [Ref. 10: p. 39]
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The current version of the SPECDEF editor defines only a synthesized attribute ¢
for some nonterminals whose value is the text string entered to represent the nonterminal.
Future versions of SPECDEF may incorporate attributes that pertain to error messages or

other environmental factors related to type checking.

2. Abstract Syntax, Phyla and Terms
The underlying abstract syntax of the language is simply the set of grammar rules

that define the language, excluding any keywords. In SSL, the abstract syntax consists of
a set of productions of the form

Xo:op (X1 Xz... Xi);
where op is an operator name and each X, is a nonterminal of the grammar. Each of
these nonterminals is the name of a phylwn, and each phylum is the set of derivation trees
that can be derived from the nonterminal. A phylum is a special kind of abstract data
type. The derivation trees are known as zerms. A term is an expression that applies a k-
ary operator to k& elements of an appropriate phyla. The SSL grammar rule acts the same
as the context-tree production:

Xo — X, X: .. Xy
The operator serves to distinguish between rules that have right-hand-sides that are
structurally identical but which may have different keywords in a concrete syntax. For
example, the operator names Equal, Add, and Subtract in Figure 6 distinguish between

three kinds of expression pairs. [Ref. 10: pp. 45-47]
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root starn,

starnt :

optional list spec;

spec :
|

module

interface

where

|

optional list concepts;

concepts :
|

concept

formal_name

expression_list

|

expression

identifier
IDENTIFIER

Spec(spec);

ModuleNil()
ModulePair(module spec)

DefModuleDecl(interface concepts);
interfaceDecl{formal_name inherits imports export);

WhereEmpty()
WhereExp(exprassion_list)

ConceptNil()
ConceptPair(concept concepts)

ConceptType(formal_name type_spec where)
ConceptValue(formal_name formal_arguments where
formal_arguments where)

FormName(identifier formal_parameters);

: SingleExp(expression)
MultiExp(expression_list expression)

UndetExp()

Equal(expression expression)
Add(expression expression)
Subtract(expression expression)

Identifier(IDENTIFIERY);
identLex< [a-zA-Z][a-zA-Z_0-9]° >.

Figure 6

Partial Listing of Abstract Syntax for Snec

The abstract syntax of a language must have one phylum designated as the root

phylum. [Ref. 10: p. 48]

phylum. The objects that can be edited within the generated editor are terms of this root
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3. Completing Term

Each phylum has a default value called the completing term. The editor uses
these default values at each unexpanded occurrence of a phylum in the derivation tree of
the object being edited. [Ref. 10: p. 48]

The completing term of a phylum is constructed by the first operator declared for
that phylum, such as the operator UndefExp of phylum expression and the operator
WhereEmpty of phylum where in Figure 6. This completing operator is applied to the
completing terms of its argument phyla. (List phyla or optional phyla are exceptions to
this rule, as described in Sections IV.B.5 and IV.B.6 below.) [Ref. 10: pp.48] For

example, the completing term for phylum module defined in Figure 6 is the term

DefModuleDecl(InterfaceDecl{FormName(...), InheritNil, ImportNil, ExpontNil}, ConceptNil)
i.e., the completing operator for module applied to the completing terms of phyla
interface and concepts. Notice that the completing term for phylum interface had to be
constructed in the same manner before the completing operator of phylum module could

be applied to it.

4. Placeholder Term
Each phylum has an associated placeholder term which is also a default represen-
tation for its respective phylum. The placeholder is used to represent an "unexpanded”
node in the derivation tree of the object being edited, i.e., it represents a "to be
determined” value for the respective phylum. [Ref. 10: p. 69]
Phyla declarations may have property declarations that determines the behavior

of the placeholder term. The property declarations can declare a phyla as an oprional




phylum, a list phylum, or an optional list phylum. Any phylum that does not have one of
these declared properties is referred to as an ordinary phylum. For ordinary phyla and
non-optional list phyla, the placeholder term and the completing term for the respective
phylum are identical. However, for phyla declared as optional or an optional list, the
concepts are different as explained in Sections IV.B.5 and IV.B.6. [Ref. 10: p. 77]

The placeholder term often displays the default representation of its phylum as a
string of characters consisting of the phylum name enclosed in angle brackets, e.g.,
<concept> or «identifier>. Such a display representation is not mandatory, however.
For example, in the SPECDEF editor, the placeholder term (and completing term) for
each of the phyla field, type_spec, and expression is the symbol ?, which is the Spec
notation for an undetermined value that must be defined later.

In any case, the placeholder term is used at an unexpanded node in the derivation
tree. Even though the derivation tree contains placeholders, it is still a complete
derivation tree from the system’s point of view. [Ref. 10: p. 49]

§. Lists and Optional Lists

Cenaip phyla are designated as Jists. A list represents a sequence of items, such
as an argument list in a subprogram. Phyla declared as lists must have exactly two
operators, one being a nullary operator and the other a binary operator that is right
recursive. In the example shown in Figure 7, phylum stmtlist is declared as a list
phylum, with the nullary operator StmtListNil and the binary, right recursive operator

StmtListPair. [Ref. 10: p. 49]




.,

list stmtList;
stmtlist : StmitListNil()
| StmiListPair(stmt stmtList)

Figure 7
Declaring a list phylum

List phyla can be declared as optional lists. Declaring a list as optional causes it

to behave as a list of zero or more elements, whereas a non-optional list behaves as a list
with at least one element. [Ref. 10: p. 82]

The completing term for list phyla and optional list phyla is defined differently
than for ordinary phyla. for a non-optional list, the completing term is constructed by
applying the binary operator to the completing term of the left-argument phylum and to
the list’s nullary operator. This has the effect of concatenating the completing term of the
left-argument phylum with the nullary operator of the list phylum, resulting in a singleton
list. For optional list phyla, the completing term is simply the constant term formed from
the nullary operator of the phylum. [Ref. 10: pp. 77-82]

The placeholder term for list phyla (whether optional or non-optional) is formed
the same as the completing term had the phylum been declared as a non-optional list. As

an example, the completing term for phylum spec in Figure 6 is the term

ModulePair(DefModuleDecl(InterfaceDecl(...), ConceptNil), ModuleNil)
i.e., ModulePair applied to the completing term of phylum module and to the term

ModuleNil. [Ref. 10: pp. 79-82]




Editors generated by the Synthesizer Generator provide special built-in actions for
manipulating list phvla. The system command forward-with-optionals <*M or
RETURN> or forward-preorder <*N> is used to move the selection point forward in a
derivation tree to the next node in a preorder traversal (see Appendix C for information
on executing system commands). When moving the selection through a list, the editor
automatically inserts a placeholder term before and after each list element. If the place-
holder term is not edited (i.e., transformed through template insertion or text entry, both
described later), when the selection is moved to an element that is not contained within
the placeholder term, the placeholder is deleted from the derivation tree. Because this
insertion and deletion process is automatic, these placeholder terms are referred to as
transient placeholders. [Ref. 10: pp. 69-72]

The qualifier optional introduces a distinction between a phylum’s completing
term and its placeholder term. As stated previously, for ordinary phyla and non-optional
list phvla. the completing term and placeholder term of the respective phylum are
identical. When the current selection is an optional list phylum, the completing term is
automatically replaced by the phylum’s placeholder term. If the placeholder term is not
edited through template transformation or text entry (both described later), and the
selection is moved outside the scope of the placeholder, the placeholder is automatically

replaced by the completing term. [Ref. 10: pp. 76-82]
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6. Optional (Non-List) Phyla

Elements of the language that are optional can be declared as optional phyla.
Optional list were discussed in the previous section. Non-list phyla can also be declared
as optional. [Ref. 10: pp. 77-82]

An optional (non-list) phylum can have any number of operators, but one must be
a nullary operator. The completing term of the optional phylum is formed from the first
listed nullary operator of the phylum in the editor specification. The placeholder term is
formed by "completing” the first operator of the phylum that is not the completing-term
operator. Since the completing term is formed by a nullary operator, it will contribute
nothing to the display representation. Therefore, the order of the operator declarations
should be arranged such that the placeholder term displays the appropriate prompt, e.g.,
the phylum name enclosed in angle brackets or some other appropriate display string.

[Ref. 10: pp. 79-80]

7. Lexical Phyla

A lexical phyvlum is used to declare special strings of characters called lexemes
that represent the smallest lexical units of the language, such as keywords, punctuation
and other special characters, or literal constants such as identifiers, integers, etc. The
three grammars that are used in an editor specification are interrelated, and lexemes play
an important role in these relationships. In the relationship between the abstract and
concrete grammars, lexemes are used to differentiate between similar constructs during
semantic anaiysis. It should be noted that in the concrete grammar, certain lexemes can

have more than one version or style. In the unparsing scheme, lexemes are used to
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display keywords, punctuation, other special characters such as operator symbols, or
constants. [Ref. 11: p. 15]

Lexemes are defined by one or more regular expressions that are recognized by
the lexical analyzer generator Lex [Ref. 17]. The form of a lexeme declaration is

phylum-name : lexeme-name < regular-expression >;

which declares that all strings generated by the given regular-expression are in the
named phylum. There must be at least one blank separating the regular expression from
the closing angle bracket. The regular expression itself must contain no embedded blank
characters except those explicitly escaped by a preceding backslash. The lexeme-name is
used in the definition of the concrete input grammar to represent an instance of the actual
lexeme, such as a keyword or special symbol. [Ref. 11: pp. 15-17]

The regular expressions in a lexeme declaration are exactly the regular

expressions accepted by Lex, with only a few exceptions as follows [Ref. 11: p. 16]:
e The blank character within square brackets must be escaped.

e Definitions, as described in Section 6 of the Lex manual [Ref. 17], are not
supported.

In Figure 8. "C" stands for any printable character, "N stands for any decimal
integer, and "E" stands for any regular expression. Each listing is a regular expression.
The symbols "\ []-*.$? "+ [ ()/{} % <> each have special meaning in regular
expressions (see [Ref. 17] for full details). If they are used as literal text characters, they
must appear within quotation marks or be escaped with a preceding backslash. Inside
square brackets, however, only the characters \ - # and blank have special meaning. All

other characters denote themselves. [Ref. 11: pp. 16-17]

37




Expression  Meaning

C the character C

*C;C2C3" the string C;C2C3

\C the character C

[CiC2C3) the character C;, C2, 01 C3

[C1-C3] any of the characters from C; through C3
[*C1C2C3) any character but C;, C2, and C3

. any character but newline

AE an E at the beginning of a line

E$ an E at the end of a line

E? an optional £

E' 0 or more instances of E

E+ 1 or more instances of E

E\E; an E; followed by an E

E,lE; anEjorankE;

(E) an E

E,E; an E; but only if followed by an E;
E(N;.N2} N through N2 occurrences of E

Figure 8
Construction of Regular Expressions

Lexeme declarations are not totally independent, since their order can influence
the recognition process during lexical analysis. When more than one regular expression
can be matched, the longest match is made. If several rules match the same number of
characters, the declaration defined earlier in the specification is used. Because of this, all
keywords should be defined prior to a definition for a class of identifiers. [Ref. 11: pp.
16-17]

Whitespace characters (spaces, tabs, newlines) are ignored during parsing, but are

important for the concrete input syntax. The lexeme declaration

WHITESPACE: < [\\n\] >;

defines such characters for the system. [Ref. 11: p. 17)
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C. PRACTICAL APPROACH TO DESIGNING AN EDITOR

There are many aspects of an editor specification. A novice editor-designer will
probably be confused on where to begin. The following discussion is the recommended
approach by the authors of the Synthesizer Generator together with insights gained
through practical hands-on experience.

Start by choosing a simple subset of the full language. This allows the editor-
designer to become familiar with the formats of the various sections of the editor
specification without getting lost in the details required for the full language. Once the
editor is implemented for this subset, and works as expected, the subset can be expanded.
The remaining steps are listed in Table 1 below and explained in more detail in the rest of

this section. [Ref. 10: pp. 162-169]

Table 1: STEPS TO DESIGNING AN EDITOR SPECIFICATION

Define the abstract syntax.
Define the display representation.
Define template transformations. )
Generate and debug editor. S
Define concrete input syntax. -
Refine the display representation. )

DD

SR

It is recommended to design the editor specification in a modular fashion. This
enhances the understandability of the editor specification. It also supports the reusability
of the different "modules” in related editors, such as upward-compatible editors for

language extensions or different editors for the same language that provide different
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display formats. Reps and Teitelbaum recommend [Ref. 10: pp. 172-178] the following

six modules for organizing an editor specification:

e Abstract-syntax declarations and template transformations on these constructs.

Lexical declarations.

»  Concrete-input syntax declarations together with precedence and associativity
rules.

¢ Attribute-domain declarations and operations on the attribute domain. (Note: the
current version of SPECDEF does not have any attribute-domain declarations,
such as environment attributes. However, future versions may need a file with
these kinds of attributes.)

¢ Attribute declarations and equations.

¢ Unparsing declarations.
It should be noted that the above order of modules does not correspond to the order of
steps for designing an editor specification. This is the recommended order that the
respective SSL files should be input to the Synthesizer Generator to create an editor.

1. Define the Abstract Syntax
The first step is to define the abstract syntax of the language subset. A Backus-

Naur Form or context-free grammar is a convenient starting point. Minimize
unnecessary syntactic distinctions. For example, in\t.he production

exp: Const(INT);
the numerals 007 and 7 will both be translated to the INT value 7, and displayed as the
numeral 7. If the distinction between 007 and 7 must to be preserved, however, the pre-

defined phylum INT should be replaced by the phylum, say, INTEGER with the lexeme




declaration
INTEGER: <[0-9]+ >;
which defines numerals as strings. Leading zeros are thus preserved. [Ref. 10: p. 163]

Omit all terminal symbols that are just "syntactic sugar”, such as punctuation
marks and keywords. Operator names will suffice to distinguish between alternative
terms of the left-hand-side phylum. Only those terminals that carry semantic information
should be retained in the abstract syntax, such as identifiers, numerals, and other literal
constants. [Ref. 10: pp. 163]

Attribution schemes can influence the design of a language’s abstract syntax.
Phrases that are lexically identical are often used for distinct purposes. The static-
semantic analysis then depends on the context in which the phrase is used. If all usages
of the phrase have a common syntax, then the context must be passed down as an
inherited attribute to select the appropriate analysis. However, if each use of the phrase
occurs in a different phylum, the context is implicit in the phylum’s operators, and the
correct attribute equations for the static-semantic analysis are automatically selected. It
is an unavoidable fact that the abstract syntax may have to be changed when attribution

rules are addressed. [Ref. 10: p. 164]

2. Define a Display Representation
The second step in specifying an editor is to define an initial set of unparsing
declarations to allow the editor to display the terms of the abstract syntax. Do not be
concerned with fancy pretty-printing at this point. Define only enough "syntactic sugar”

to debug the abstract syntax. Specifically, do not consider alternative unparsing schemes

41




(an alternate display representation of the given production, often used for an
"abbreviated" display), optional line breaks, context-dependent disglay formats, and
special fonts now. However, line breaks and simple indentation rules are advisable at
this stage. [Ref. 10: p. 164]

The unparsing declarations define which productions of an object are editable as
text as well as the display format of a term. There is an unparsing production corre-
sponding to each production of the abstract syntax. Each unparsing production consists
of a sequence of strings, names of attribute occurrences, names of right-hand-side
phylum occurrences, and selecrion symbols. The unparsing rules take one of two forms:

phylum : operator [left-side : right-side},
phylum : operator [left-side ::= right-side],

The unparsing scheme between the square brackets represents a concrete display format
for the corresponding abstract syntax production. The symbol := indicates the
production’s text is editable, whereas the symbol : indicates the production is (usually)
treated as an indivisible structural unit. Not all operators of a given production have to
use the same symbol. The left-side is a selection symbol (explained below) representing
the left-hand-side of the corresponding abstract syntax production. The right-side is a
sequence of strings, attribute-names and selection symbols representing the right-hand-
side of the corresponding abstract syntax production, and defines the display format for
that production. [Ref. 10: p. 59]

Indentation and line breaks are indicated by the following control characters:

%t - move the left margin one indentation unit to the right
%Db - move the left margin one indentation unit to the left
%n - break the line and move to the left margin of the next line
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These control characters can be included in strings (i.e., inside double quotes) of an
unparsing rule. [Ref. 10: pp. 59-60]

Each nonterminal (i.e., phylum name) in an abstract syntax production is replaced
by the selection symbol @ or * in the corresponding unparsing rule. These selection
symbols define the selectability property for the corresponding node in the tree. The
selection symbol @ specifie: that the phylum occurrence is a resting place; the selection
symbol A denotes a non-resting place. A resting place is a point where the corresponding
phylum occurrence can be expanded through template insertion or iext entry. Each node
in the syntax-tree is an instance of two phylum occurrences in the grammar: as a lefi-
hand-side occurrence in one production, and as part of a right-hand-side occurrence in
another. If either of its two corresponding occurrences is specified with an @, that node
is a resting place. [Ref. 10: p. 61]

Care must be taken when defining unparsing schemes for list phyla. The two
occurrences of the list phylum (i.e., the left-hand-side and the second argument on the
right-hand-side) should be defined with @ and the element-phylum (the first argument
on the right-hand-side) should be defined with A. This prevents an extra resting place at
the element-phylum position. Conditional unparsing of list separators are declared inside
square brackets. These list separators are suppressed from the display of production
instances occurring at the end of a list. For example, in Figure 9, the ["%n%n"]} in the
unparsing declaration for ModulePair cause each element of the list to be separated by a

two line-feeds. [Ref. 10: p. 61]
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The unparsing declarations should initially contain the maximal number of resting
places to allow full exploration and debugging of the abstract syntax. Plan on elimi-
nating undesirable resting places later by changing some of the phyla occurrences from
@ 1o . [Ref. 10: p. 164}

Primiiive (lexical) ph;la occurrences are an exception to this rule--they should
not be resting places. This has the effect of forcing the resting place one node higher in
the tree. To see why this is useful, imagine the following situation based on the abstract
syntax and unparsing rules for a desk calculator depicted in Figure 10. Suppose the
selection is positioned at an occurrence of phylum INT in one of the desk calculator’s
expressions. The pre-defined primitive phylum INT has a placeholder term of 0, which
would replace the selection if the command delete-selection <*K> were executed and
INT was a restng place. But if INT is not a resting place, the selection is forced one
level higher to Const(INT). INow if the command delete-selection is executed, the
placeholder term for exp, namely Null, replaces the selection. The di<nlay representation
for Nuil is the string <exp>. [Ref. 10: pp. 163-165)

Since occurrences of primitive phyla are not resting pléces, in operators of arity
two or more, the primitive phyla occurrences will not be individually selectable.
Therefore, an extra syntactic level is necessary to allow the individual selection of
components. Failure to add this extra level is a common mistake made when designing

an editor specification. [Ref. 10: p. 165]




stant : Spec (@ : @]
spec ModuleNn @ =]
ModulePair (@ 1= [*%Nn%n"] @]
module DefModuleDecl [@ ::= "DEFINITION " @ @ "%n"
"END"
interface InterfaceDecl [@ = @ "%t%n” @ "%n" @ "%n" @ "%b%n"]
Qhere : WhereEmpty @ =]
| WhereExp i@ = "WHERE " @]
concepts ConceptNii @ =]
| ConceptPair [@ :=*["%n"] @)
concept - ConceptType (@ ::= "%t%n™CONCEPT " @ " : " @ "%t%n"
@ "“%b%b%n"]
ConceptValue [@ = "%1%n""CONCEPT " @ @ "%t%n"
@ "%n"
"VALUE " @ "%n" @ "%b%b%n"]
formal_name :‘ FormName @ =@"" @]
é';(pression_list: SingleExp [@ = @]
| MultiExp @:=@""@]
expression UndefExp [@ ::="77]
| Equal [@:=@"="@)
| Add @:=@"+"@]
! Subtract @:=@"-"@]
identitier Identitier (@ = 4]
Figure 9

Parnal Listing of Spec Unparsing Declarations
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roof caic;

list caic;

calkc : CalcNil()
] CalcPain(exp calc)

exp : Null{)
| Sum, Diff, Prod, Quot(exp exp)
| Const(INT)

calc : CalcPair (@ ::= @ "WNVALUE = 2?7 :%n%n"KD];

exp : Null [@ ::= "<exp>"]
| Sum @:="C@"+" @]
| Ditt @:="("@"-"@")]
! Prod @ =@ " @]
| Quot @:="("@"/"@")]
| Const [@ :=4]

Figure 10
Desk Calculator abstract syntax and unparsing rules

3. Define Template Transformations
The third step in designing an editor specification is to provide a set of wansfor-

mation declarations, or template transformations to restructure an object when the current
selection is a placeholder. The purpose of a template transformation is to replace the
placeholder term with the template of one of the other productions of the respective
phylum. The form of a transformation declaration is

transform X, on transformation-name <Xy> : operator (<X;>,...,<X,>);
which corresponds to the abstract syntax production

Xo : operator (X;..Xa)

Each <X;> denotes the placeholder term of the phylum X;. [Ref. 10: p. 166}




As with other kinds of SSL declarations, the phylum name X, can be factored to

the left when there are multiple transformations on the same phylum [Ref. 11: p. 86]:

transform X,
on transformation-name; <Xy> : operator; (<X;>.,...,<X,>),
on transformation-name; <Xp> : operator; (<Y>,...,<¥,>),

on transformation-name, <Xy> : operatory (<Z;>,...,<Z,>)

y

The transformation-name is enclosed in double quotes and constitutes command
that can be invoked to replace the placeholder term with the invoked template (sce
Appendix C for information on invoking template transformations). Figure 11 is a partial
lizting of the template transformations for Spec.

List phyla and optonal phyla do not normally require template transformations.
Commands that move the selection (e.g., forward-with-optionals [*"M or RETURN] and
forward-sibling-with-optionals [ESC-*M]) provide adequate transformations for these

phyla. [Ref. 10: p. 166]

transform concept
on "type” <concepts>: ConceptType(<formal_names>,<type_spec>,<wheres),
on "value” <concept>: ConceptValue(<tormal_name> <formal_argumentss,
<where>, «formal_arguments>,<where>)

transform expression_list
on "single” <expression_list>: SingleExp{<expression>),
on "multiple”  <expression_lists: MultiExp(<expression_list>,<expression>)

transform expression

on "=" <expression>: Equal(<expression>,<expressions),

on "+" <expression>: Add(<expressions,<expression>),

on"-" <expression>. Subtract(<expression>,<expression>)
Figure 11

Partial Listing of Spec Template Transformations
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4. Generate and Debug Editor

At this stage the partial editor specificanon defines enough of the editor’s
structure-editing facilities to allow the Synthesizer Generator to create an editor and for
you to test the editor’s characteristics. Invoke sgen on the specification files. By
default, the created editor will be placed in the file syn.out. This c:an be overridden with
the -0 option which allows the user to declare what filename the editor will be called.
[Ref. 10: p. 167}

Recommended options to include at this point are the -w window-system-name
window opton, which specifies that the editor will be created for the specific window-
system-name, and the -v option, which invokes Yacc [Ref. 18] with the -v flag so the
diagnostic file y.output will be produced. This file is useful for debugging the
specification file. [Ref. 10: p. 288]

The y.output file produced by Yacc is a complete listing of the state machine
model that represents the created editor. If there are any parsing conflicts in the editor
specification, these can be located in the y.output file by loading it into the vi editor and
doing a search for the word conflict. Specifically, the types of conflicts that can occur

are shift'reduce and reduce/reduce conflicts, both of which are described in detail belc ».

5. Define Concrete Input Syntax
Next, define the concrete syntax for textual input. The concrete syntax consists of
lexical declarations, parsing declarations, and correspondence rules for connecting the

concrete syntax and the abstract syntax. Initially, provide only those rules needed to
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permit entering lexemes and simple expressions. The rules can be elaborated later to
permit text entry for additional language constructs. [Ref. 10: p. 167]

The term text editing refers to the process of modifying the textual representation
of an object through operations on the character sequence [Ref. 10: p. 108]. Structure
ediring is the process of modifying the underlying abstract syntax tree structure of an
object [Ref. 10: p. 95].

Text editing is more appropriate than structure editing for entering and modifying
expressions. It is also needed for entering identifiers. While a subterm is being edited,
the usual rigors of the syntax directed discipline are temporarily suspended, since the
subterm being edited can be any string whatsoever. When the editing is complete, the
string is parsed and translated to the corresponding term of the abstract syntax. [Ref. 10:
p. 62]

a. Parsing Declarations

The parsing declarations that define the concrete input syntax are distin-
guished from the other phylum and operator declarations of an SSL specification by
using the symbol ;= instead of : to separate the left-hand-side phylum name from the
right-hand-side symbols. Additionally, parsing declarations may have tokens (single
characters enclosed in quotes) interspersed among the phylum symbols on the right-hand-
side.

Each parsing declaration has the form:

phylum-name ::= operator-name (tokens phylum) tokens phylum; ... phylumy tokens);
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Some of the phylum; may be lexical phyla that define keywords or other multi-character
tokens. Knowing which string occurred in the input is usually relevant. Therefore, the
corresponding string appears as the i-th argument of the operator in the parse tree.
Examples of parsing declarations are shown in Figure 12. [Ref. 11: pp. 76-77]

Anribute equations for constructing terms from text input are combined with
the parsing declarations using the following syntax:

phylum-name ::= operator-name (parsing-scheme) {equations},

Synthesized attributes of the left-hand-side phylum and inherited attributes of the right-
hand-side phylums are termed the production’s output auributes. An attribute equation
defines the value of an output attribute in terms of other attributes accessible within the
production. The attribute equation(s) are grouped inside curly braces. An output
attribute b of phylum X is denoted by X.b. If there is more than one occurrence of
phylum name X in an attribute equation, the various occurrences of b are denoted (from
left to right) by X$1.b, X$2.b, etc. An atribute b of a left-hand-side phylum of a
production can be denoted by $$.b. [Ref. 11: pp. 27-28]

Examples of attribute equations are shown in Figure 13. In the attribute
equations for SPECDEF, the attribute ¢ is for rext. As an example of how the attribute
equations work, let’s examine the equation for phylum FormalName. The text attribute
for FormalName is given the value formed by applying the abstract syntax operator
FormName to the value of the text attributes of the concrete input phyla ldent and

FormalParm.
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Module .= (DEFINITION interface Concepts END);
Interface = (FormalName Inherits imports Export),

aoncepts = {Concept)
| (Concept Concepts)

FormalName = (Ident FormaiParm);
FormalParm =)
| ({ FieldList '} Where)

Ident = (IDENTIFIER):

Figure 12
Concrete Syntax Parsing Declarations

The format of attribute equations for list phyla is different. Examine the
attribute equations for phylum Concepts in Figure 13. For the first production, the text
atribute of Concepts is given the value formed by concatenating the value of the text
attribute of phylum Concept with the nullary term ConceptNil. For the second
production, the new value of the text attribute of phylum Concepts, designated on the
left-hand-side as Concepts$1., is given the value formed by concatenating the value of
the text attribute of the phylum Concept with the previous value of the text attribute of
phyvlum Concepts, designated on the right-hand-side as Concepts$2.t. Recall that
multiple occurrences of a phylum name X within an attribute equation are differentiated

left to right as X$1, X$2, etc.
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Module .= (DEFINITION Intertace Concepts END)
{Module.t = DefModuleDedl(intertace.t,Concepts t);}
interface ;:- (FormalName inherits Imports Export)
{interface .t = interfaceDeci(FormaiName.t inherits.t,
Imports.t,Export.t);}
E;Bnoepbs = (Concept) {Concepts.t = (Concept.t :: ConceptNil);}
| (Concept Concepts)

{Concepts$1.t = (Concept.t :: Concepts$2.1);}

.l;-;wmalName = (dent FormalPamm) :
{FormalName.t = FormName(ident.t, FormaiParm t);)

FormalParm e () ($S.1 = FormalParmEmpty())
| ({ FieldList }' Where)
{FormalParm.t = FormaiParmList(FieldList.t Where.t);)

ident = (IDENTIFIER) {Ident. = identifier((DENTIFIER);)

Figure 13
Parsing Declarations with Attribute Equations

The operator names of parse tree terms are optional, and usually are not
needed since the parser constructs the parse tree. A unique operator name is

automatically generated by the parser. [Ref. 11: p. 78]

b. Correspondence Between Concrete Syntax and Abstract Syntax
To translate from text to term, rules are needed that define the association
between the abstract syntax and the concrete ..put syntax, along with attribute equations
that synthesize the term as an attribute of the parse tree. These rules are associated with
the productions of the concrete syntax, which is thus extended to become an attributed
grammar which generates terms of the abstract syntax. [Ref. 10: p. 62]

Attributes must be defined with an artribute declaration which has the form

concrete-syntax-phylum { synthesized abstract-syntax-phylum antribute-name;},
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Examples of attribute declarations are shown in Figure 14. Note that the reserved word
synthesized can be abbreviated as syn. [Ref. 11: pp. 24-25]

A convenient convention for naming the concrete syntax phylum is to use the
same name as the corresponding abstract syntax phylum and capitalize the first letter of
each "word" within the name (e.g., FormalName). Occasionally you may have to invent
some other name if such a capitalized name has already been used, for example, as an
operator in the abstract syntax declarations. Attribute names are often abbreviated words
or phrases that are descriptive of what kind of attribute they are naming (e.g., t for text,
env for environment, etc.) [Ref. 11: p. 9; 10: p. 63]

Entry declarations establish the correspondence between selections in the
abstract syntax and entry points within the concrete input syntax. Each entry declaration
has the form:

abstract-syntax-phylum ~ concrete-syntax-phylum.attribute-name;
This declaration specifies that when the current selection in the abstract-syntax tree is a
node of phylum abstract-syntax-phylum, the input is parsed according to the parse declar-
ations of concrete-syntax-phylum, and the value of attribute concrete-syntax-
phylum.attribute-name is inserted into the abstract-syntax tree, replacing the currently
selected subterm or sublist. Figure 14 is a partial listing of text attribute declarations and

entry declarations for Spec. [Ref. 10: pp. 62-65; 11: pp. 74-76)
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Moduie { syn module t; };
interface { syn imterface t; };
wmhere { synwheret; };
Concepts { syn concepts t; };
Concept { syn conceptt; };
FormalName { syn formai_name t; };
ExpList { syn expression_list t; };
Exp { syn expression t; };
ident { syn identifier t; };
module ~ Module.t;
interface ~ Intertace.t;
\;/.here ~ Where t;
concepts ~ Concepts.t;
concept ~ Concept.t;
formal_name ~ FomalName.t;
é;tpression_list ~ Explist.t;
expression ~ Expt;
identifier ~ ident.t;

Figure 14

Association Between Abstract Syntax and Input Syntax

¢. Concrete Lexical Declarations
Lexical phyla should be declared for each keyword and other multi-character
token of the language. A declaration for the special token WHITESPACE should be
included at this point if it has not been previously declared. Examples of lexical

definitions are shown in Figure 15. [Ref. 10: p. 167]




WHITESPACE: WhiteSpace< [\ \\n]* >;

AND: AndLex< "&" >;

OR: OrLex< | >;

NOT: NotLex< "~" >;

CONCEPTS: ConceptLex< "CONCEPT" »;

DEFINITION: DefnLex< "DEFINITION" >;

END: EndlLex< "END" >;

SEMI: SemiLex< " >;

PLUS: PlusLex< "+" >;

MINUS: MinusLex< "-" >;

INTEGER_LIT: IntegerLex< [0-9]+ >;

IDENTIFIER: identLex< [a-zA-Z){a-zA-Z_0-9]" >;

Figure 15

Lexical Definitions

d. Parsing and Ambiguities

The Synthesizer Generator uses the parser generator Yacc [Ref. 18] to create
the editor’s parser. As the parser scans the input stream, it pushes and pops tokens
onto/from a stack according to the parsing declarations. A shift pushes the next token o
onto the stack; a reduce pops tokens off the stack when all tokens necessary to complete
a parsing rule have been seen. The resulting token (an occurrence of the left-hand-side of
a parsing declaration) is then pushed onto the stack before the next token « is parsed.

Yacc will detect and report any ambiguities in the input grammar. Ambigu-
ities are of two types: a shift/reduce conflict or a reduce/reduce conflict. A shift/reduce
conflict arises when the parser cannot determine, based on the stack contents and the next
token o, whether to apply a reduction rule or to shift & onto the stack, thereby deferring

the reduction. A reducel/reduce conflict arises when the parser can apply more than one
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reduction rule to the current contents of the stack. By default, Yacc resolves these

conflicts as follows:
¢ For a shift/reduce conflict, perform the shift.

e For a reduce/reduce conflict, reduce by the production declared earliest in the
specification.

These resolution rules will often not do what you intended. Therefore, some additional
mechanism is required to resolve ambiguities. [Ref. 11: p. 79]

Precedence declarations provide this additional mechanism for resolving
ambiguities in the input grammar. They must be listed prior to the parsing declarations.
These precedence declarations associate precedence levels with characters and lexemes.

There are three forms of precedence declarations:
left token-or-phylum,,....token-or-phylum,
right token-or-phylum,,....token-or-phylum;
NONassocC token-or-phylum,,...,token-or-phylems;

Each token-or-phylum can be a single CHAR constant, such as ’+’, or the
name of a lexical phylum, such as IDENTIFIER. The same precedence level and
associativity is assigned to all characters and lexemes denoted by token-or-
phylum,,....token-or-phylum,. The order in which precedence declarations are listed in
the SSL specification is extremely important--each successive declaration receives a
higher precedence than the previous declaration(s) (i.e., precedences are declared low-to-
high). The keywords left, right, and nonassoc define the associativity of the listed
tokens. The effects of precedence and associativity are described below. [Ref. 11: p. 79]

The final token in a concrete syntax production determines the precedence

level and associativity of the production. Precedences and associativity can be associated
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with complete productions as well as with tokens. To assign an explicit level of
precedence to a production, which could be either the same as or differer.! than the
precedence level of the last token (if one is present at all), the parsing declaration uses the
form:

phvlum-name ::= operator-name (list-of-tokens-and-phyla prec coken-or-phylum);
Yacc uses these precedence rules to disambiguate the productions of the input grammar

as follows:

e When there is a reduce/reduce conflict, or there is a shift/reduce conflict and
either the input symbol (i.e., character or lexeme name) or the grammar rule has
no precedence and associativity, the disambiguation rules stated above are
applied and the conflicts reported.

e If there is a shift/reduce conflict, and both grammar rule and input character have
precedence and associativity, the conflict is resolved in favor of the action (shift
or reduce) associated with the higher precedence. If precedences are the same,
associativity is used: left associative implies reduce; right associative implies
shift; nonassociating implies error.
Using the -v option of sgen is extremely helpful in debugging such conflicts. The
y.output file generated by Yacc will indicate all shift/reduce and reduce/reduce conflicts
and which tokens caused them. After running sgen, edit this file and perfform a search
for the word "conflict”. [Ref. 11: p. 80]

Figure 16 is a partial listing of the lexical phyla, precedence declarations, and

concrete syntax parsing declarations for SPECDEF.
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Module

interface

FormalName
ExpList

Exp

Ident

I lexical phyla */

WHITESPACE: WhiteSpace< [\ \\n]" >;
CONCEPT: Conceptlex< "CONCEPT" »;
DEFINITION: DefnLox< "DEFINITION® >;
END: EndLex< "END" >;

VALUE: Valuelex< *“VALUE" >;
WHERE: Wherelex< *“WHERE" >;
SEM!: Semilex<*;" »;

COMMA: Commalex<*®® >;

PLUS: Pluslex< "+" >;

MINUS: MinusLex< *-" >;

I precedence and associativity rules */

loft ' SEMI IDENTIFIER;

left ' COMMA;

left ‘="

left '+ - PLUS MINUS;

* concrete input syntax */

.= (DEFINITION Interface Concepts END)
{Module.t = DefModuleDedi(Interface.t,Concepts.t);}

.= (FormaiName Inherits imports Export)

{Interface .t = Interface Decl(FormalName.t.inherits.t imports.t, Export.t);}

= (prec SEMI)
| (WHERE Explist)

{$$.t = WhareEmpty()}}
{Where.t = WhereExp(ExpList 1);}

{Concepts.t = (Concept.t :: ConceptNil);}
{Concepts$1.t = (Concept.t :: Concepts$2.t);}

.= (CONCEPT FormalName ' TypeSpec Where)

- (Concap®)
| (Concepts Concept)

{Concept.t = ConceptType(FormalName.t, TypeSpec.t, Where.t);}

| (CONCEPT FormalName FormalArg Where VALUE FormalArg Where)

{Concept.t = ConceptValue(FormaiName.t,FormalArg$ 1.t Where$ 1.¢,

FormalArg$2.t Where$2.1);}
;= (Ident FormalParm) {FormaiName.t = FormName(idcat.t FormalParm.1);}
= (Exp prec COMMA) {ExpListt = SingleExp(Exp.1);}
| (Explist' Exp prec COMMA) {ExpList$ 1.t = MURIExp(ExpList$2.1,Exp.t)}}
= (?) {Exp.t = UndefExp();}
| (Exp ‘=" Exp prec '=') {Exp$ 1.t = Equal(Exp$2.L Exp$3.1);}
| (Exp'+ Exp prec PLUS) {Exp$1.t = AJK(Exp$2.t,Exp$3.1);}

| (Exp -' Exp prec MINUS) (Exp$1.t = Subtract(Exp$2.t, Exp$3.1);}
;:- (IDENTIFIER) {ident.t = identifier(IDENTIFIER);}

Figure 16
Lexical Phyla, Precedence and Associativity Rules, and

Concrete Input Syntax Parsing Declarations for SPECDEF
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6. Refine the Display Representation
The final step to complete the initial version of the editor specification is to refine
the display representation. In Section IV.C.2 we suggested that the unparsing declar-
ations be written with the maximal number of resting places. Any undesirable resting
places should now have their selection symbol changed from @ to . It is very important
that the selection symbols in lists are defined according to the pattern shown in Figure 17

because selections in lists are handled specially. [Ref. 10: p. 171]

abstract syntax rule unparsing rule
list listType;
listType : ListTypeNuli() @ :=]
| ListTypePair(listElement listType) @ :=*@]
listElement ListElementNull() [* ;= "<lisiElement>"]
Figure 17

Unparsing pattern for list phyla

For example, the unparsing declarations shown in Figure 9 should be changed to
have some of the selection symbols on the left-hand-side of the unparsing rules changed
from @ to * as shown in Figure 18.

Finally, the editing-mode symbols in the unparsing declarations (i.e., the ::= and :
symbols) need to be checked that they specify the desired text-editing properties for the
various operators. Specifically, if the operator allows text entry, the ::= symbol should be
used, but if text entry or text re-editing is not allowed, the : symbol should be used. Note
that the symbol ::= also allows textual re-editing of elements. Therefore, if the designer

wanted to allow the entry of individual lexemes but not full expressions, the unparsing
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rules for the phylum expression should be changed from what was shown in Figure 18

to those shown in Figure 19. [Ref. 10: p. 172]

start Spec @:@]
spec : ModuleNil (@ =]
! ModulePair [@ == * ["%n%n"] @]
module : DefModuleDec! [@ ::= "DEFINITION* @ @ "%n"
"END")
interface InterfaceDecl [@ ;= @ "%t%N" @ "%n" @ "%n" @ "“%b%n"]
»;here : WhereEmpty (A =]
| WhereExp [* := "WHERE " @]
concepts ConceptNil @ :=]
| ConceptPair (@ = * [*%n"] @]
concept ConceptType [A = "%t%N™CONCEPT * @ " : " @ "%t%n"
@ "%b%b%n
| ConceptValue [* = "%t%n""CONCEPT " @ @ "%t%n"
@ "%n"
"VALUE " @ “%n" @ "%b%b%n"]
formal_name :’ FormName f=@"" @)
;;(pression_list: SingleExp * = @]
| MultiExp f=@""@]
expression UndetExp [* ="
| Equal [fr=e@"="@]
| Add [f=@"+" @)
| Subtract f=@"-"@]
identifier - \dentitier [* 4]
Figure 18

Refined Unparsing Declarations for Spec




expression UndefExp [* ="
| Equal [*:@"="@]
| Add @+ @)
| Subtract f:@"-"@)
Figure 19

Unparsing rules that forbid re-editing

7. Advanced Unparsing Features

We have already discussed the use of the control strings %t, %b and %n in
unparsing declarations to signal tab, backtab, and new line, respectively. It should be
noted that changing the left-margin (i.e., with %! or %Db) has no immediate visible effect.
The change is only evident after the start of a new line. [Ref. 11: p. 64]

To prevent the undesirable effect of having long lines of display text broken in
mid-word, optional line breaks, indicated by %0, provide the means to specify places
where a term’s display string may be divided into separate lines. The designer can
impose a hierarchical structure on the display string by the matched grouping symbols
%{ and %}. The editor will attempt to split long lines containing optional line breaks in
such a way that the minimum number of unparsing groupings will be split and the
amount of text on the line is maximized. A grouping only has effect if it contains an
optional line break. If indentation is desired only for the text that follows an optional line
break that is taken, the formatting command string %t%C%i) may be used. A complete

listing of unparsing display commands is shown in Figure 20. [Ref. 11: pp. 63-66]
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Formatting
Command Meaning
%t move the left-margin one indentation unit 1o the right
%b move the left-margin one indentation unit to the left
%n break the line and retum to the current left-margin
%l return to current left-margin of the same line and overprint
%1 move o column one of the same line and overprint
%T move right to the next tab stop
%M(c) move right to column ¢, where ¢ is a positive integer
%0 optionally, break the line and return to the current left-margin
%C same as %0, but either all or no %C in a group are taken
Yof beginning of an unparsing group
%} end of an unparsing group
%[ same as %t%(
%) same as %}%b
%S(style-name: enter the named style
%S) revert to the previous style
%% display a %
Figure 20

Formatting Commands

To see how some of these commands can be used, let’s look at an example of an
unparsing declaration that includes groupings and optional line breaks. The following
declaration uses the formatting commands for beginning and end of an unparsing group,
beginning and end of an unparsing group with tabs and backtabs, and optional line
breaks:

expression : QuantifierExp [* 1= "%{" @ "(" @ "%0" @ "%}%]|[%0 ;1 " @ ")%]"]
The resulting expression could be displayed in several formats that would be dependent
on the width of the current window. Figure 21 shows these different formats with one or

more of the optional line breaks taken.
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ALL(item : type1 SUCH THAT foo(a) < 27 :: item = “item + 1)

AlL(item : type1
SUCH THAT foo(a) < 27 :: item = “item + 1)

ALL(item : type1 SUCH THAT foo(a) < 27
:item = "item + 1)

ALL{item : type1
SUCH THAT foo(a) < 27
 tem = *item + 1)

Figure 21
Effect of optional line breaks on display

D. DESIGN DECISIONS
1. Spec Subset
The subset of Spec I chose to implement is the Definition Module. Definition
modules are used in the requirements analysis phase of the software development cycle
[Ref. 1]. Implementing an editor for the definition module provides the initial support for
utilizing Spec in this phase of software engineering.
2. Type Checking
Editors created by the Synthesizer Generator can have the capability to perform
type checking provided the proper attribute equations are written to support this
checking. However, since other research is currently being done to implement a separate
type checker for Spec [Ref. 15], the decision was made to not implement this capability
in the syntax directed editor. Eventually, when the editor and the type checker are fully
implemented, both tools will be integrated into one larger tool that will perform both

functions.
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3. Display Representation

In order to make the visual display "user friendly", many of the constructs in Spec
had productions added whose purpose is to display a placeholder string. These
productions appear in both the abstract syntax and the unparsing grammar. The format of
these placeholder strings is the phylurr name enclosed in angle brackets, e.g., <concept>
or <actual_parms.

Although not part of the original Spec grammar, these productions are declared as
the completing term for the respective phylum. The phyla that have this additional
production are all non-list phyla, therefore the completing term is also the placeholder
term for the given phylum. This causes the visual display to show where a selection
should be made at a later time if a template transformation is not selected.

Some constructs in Spec already have a usable completing term, specifically field,
type_spec, and expression, which all use the symbol ? to represent undefined

occurrences of the respective phylum.

4. Naming Conventions
The following conveantions were selected for naming of phyla, operators, and

attributes:

e Abstract syntax phyla are all lower case (e.g., concept), and are exactly the same
as the original Spec grammar.

e Operators on abstract syntax phyla have the first letter of each "word" within the
operator name capitalized (e.g., NotGreaterEqual).

e Lexemes are fully capitalized (e.g., IDENTIFIER).




e Lexical phyla operators are capitalized with the same conventions as abstract
syntax phyla operators. Additionally, with the exception of the special lexical
phylum WHITESPACE, each of these operators ends in the word Lex (e.g.,
Ngelex).

Template transformation names are all lower case (c.g., "single”), or are a symbol
made of one or more non-alphanumeric characters (e.g., "+" or "~>=").

o Concrete input syntax phyla have the same name as the corresponding abstract
syntax phyla (with only a few exceptions) with the first letter of each "word"
within the name capitalized (e.g., FormalName or IntegerLit, corresponding to
abstract syntax phyla formal_name and integer_lit, respectively).

e Atuributes are all labelled as a lower case t, since the only attributes used in this
editor are synthesized text attributes.

5. Implementation

A listing of the current implementation of SPECDEF is given in Appendix B. A

user’s manual for the current version of SPECDEEF appears as Appendix C.
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V. CONCLUSIONS

A. APPLICABILITY OF THE SYNTAX DIRECTED EDITOR FOR SPEC

The SPECDEEF editor successfully demonstrates the feasibility of designing a CASE
tool for the specification language Spec. The current version of the editor supports a
subset of Spec consisting solely of definition modules and prevents the user from writing
syntactically incorrect specifications. All Spec constructs that are applicable to a
definition module are implemented in the editor. The SPECDEF editor provides the
means to quickly and correctly write Spec definition modules in support of the
requirements analysis pha-e of the software development cycle.

The display representation is designed in such a way that the editor can assist the
novice user in learning the syntax of Spec. As with other syntax directed editors for
other languages, this could be seen as a hindrance or an annoyance to the more
experienced Spec specification writer, since the method of building a parse tree of the
specification being edited requires the user to traverse the entire parse tree of the Spec
grammar itself.

A significant foundation has been laid for designing an editor that will implement the
entire Spec language. Approximately half of the Spec grammar rules have been

implemented.




B. USEFULNESS OF THE SYNTHESIZER GENERATOR

The Synthesizer Generator proved to be an extremely useful, albeit sometimes
difficult, CASE tool to assist in the design and implementation of a syntax directed
editor. The book and reference manual for the Synthesizer Generator [Ref. 10 and 11]
are not always clear in their explanations of the various concepts that must be mastered to
write a successful editor specification.

I found it very advantageous to refer to the specification of the toy.syn editor, one of
the sample editors that comes with the sgen system. The specification file toy.ssl can be
found in the /usr/suns2/iocal/syn/editors/toy directory on the suns2 system. There are
several other sample editors in the /editors subdirectory of /syn whose specification files
may provide insight to some readers.

The various options available when invoking sgen make the Synthesizer Generator
system very versatile. Specifically, the -v option to flag Yacc to produce the diagnostic
file y.output is extremely useful in debugging ambiguities in the input grammar. The
ability of sgen to create an editor for different windowing systems using the -w option
makes this system very powerful, since the same input file(s) can be used to create many
different editors that target specific systems.

The Synthesizer Generator creates many intermediate files during the process of
generating an editor. Unless you have prodigious amounts of free memory available, 1
highly recommend that the -l option (lower case L) not be invoked. This option saves all
intermediate files, which can easily use up several megabytes of memory. Under normal

operation these files are deleted once the executable editor file is generated.
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Learning the editor system commands to navigate around the parse tree of a specifi-
cation being edited is rather difficult. There is quite a list of commands available; a
complete list appears as Appendix D. However, only a portion of the commands are
routinely used to edit a specification, as listed in Table 2. The use of these commands is
discussed in the user’s manual, which appears as Appendix C. Once these commands are

learned, writing a Spec definition module is quick and easy.

Table 2: COMMONLY USED EDITOR COMMANDS

Command Key-binding
backward-preorder <P >
beginning-of-line < A>
delete-next-character <"D>
delete-other-windows <*X1 >
delete-previous-character < DEL >
delete-selection < K>
end-of-file <ESC-> >
end-of-line <*E>
enlarge-help < ESC-AXz >
erase-to-beginning-of-line < ESC-DEL >
erase-to-end-of-line <ESCd>
execute-command <* or TAB >
exit <"C>
forward-preorder < N>
forward-with-optionals < *Mor RETURN >
left <"B>
next-window <*Xn>
previous-window <*Xp >
read-file < *X*R >
redraw-display <AL>

right <*F>

select < ESC-@ >
start-command <ESC-s >
write-named-file < AXAW >




C. DEFICIENCIES AND BUGS ENCOUNTERED

The SPECDEF editor is strictly a syntax directed editor. There is no capability
provided for semantic checking. As stated previously, the type checking features that
sgen is capable of producing are not included in this editor since independent research in
this area is currently in progress. This means that, although a specification written using
the editor will be syntactically correct, it is possible for it to be incorrect semantically.

One deficiency with the SPECDEEF editor is the lack of support to insert comments
into the specification being edited. Although sgen is capable of supporting this feature
when properly specified in the editor specification, time constraints prevented the

inclusion of this capabiiity, which requires extensive coding to accomplish.

D. RECOMMENDATIONS FOR FUTURE RESEARCH

1. Implement the Complete Spec Language
The remainder of the Spec language needs to be implemented in the editor. When
this is accomplished, the editor will support not only the requirements analysis phase of
the software development cycle, but also the functional specification and architectural
design phases.
2. Integrate the Type Checker and the Editor
The type checker currently being implemented independently should be
integrated with the editor once both tools are completed. This will make the editor a very
powerful tool for software engineering with Spec. The combined tool will form the

foundation of an integrated Spec programming environment.
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3. Integrated Spec Programming Environment

Many different tools for Spec are under development or planned for future
research. A pretty printer has already been designed. The type checker is currently
under development. Future research projects include a consistency checker, an
inheritance expander, a test oracle, and a diagram generator. There are also plans to
design a translator from Spec specifications to compilable Ada code.

Each of the above mentioned tools, along with the editor, are planned for
integration into a programming environment for Spec. This environment will be capable

of supporting the entire software development cycle.
4. Investigate Applicability of Utilizing the GANDALF System
The GANDALF System [Ref. 7] might be more useful than the Synthesizer
Generator for creating a syntax directed editor. Some of the additional capabilities of
GANDALF are the ability to generate system environments that could support multiple
programmers on large projects, and a limited project management system. The need for
these capabilities should be investigated, and if it is determined that such a need exists,
future versions of the editor should be built using GANDALF instead of the Synthesizer
Generator.
5. Automating the Design of an SSL Specification
After the conceptual breakthrough occurs on how to design an editor specification
using SSL, adding more constructs to the grammar becomes a relatively mechanical
process. The different sections of the SSL specification are closely related in terms of

names of phyla and operators. This indicates a possibility that some aspects of designing
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an SSL editor specification could be automated. For example, when an abstract syntax
rule is entered, the automation process could generate the display representation rules,
template transformation rules, etc., possibly through the use of pop-up windows that
request specific information for naming or formatting the additional rules, or asking for
informati on about attributes.

Automating some portions of this process would enhance the usability of a tool
such as the Synthesizer Generator. Additionally, the amount of time to produce an editor

specification would be reduced dramatically.
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APPENDIX A

COMPLETE SPEC GRAMMAR

The following is a lisiing of the complete grammar for the Spec specification
language. The current version of Spec is 1.11. Optimization of the language is still

under research, so the reader can expect further revisions to Spec in the future.

versicn stamp SHeader: spec.k,v 1.11 BS9/04/05 14:02:21 berzins Locked $

Ir. the gramrar, comments go from a "!™ to the end of the line.

Terminal symbcls are entirely upper case or enclosed in single guctes (’).
Nornterrinal symbcls are entirely lower case.

_Lexical character classes start with a captial letter and are enclosed in {}.
! In a regular expression, x+ means one or more X's.

{ In a regular expression, X* means zerc or more x's.

! In a regular expression, [xyz) means x or y or z.

! In a regular expression, [“xyz] means any character except X or y or z.
Ir. a reg.lar expression, 'a-z) means any character between a and z.
In a regular expression, . means any character except newline.

! definiticns of lexicai classes

fdefine Dig:wt :10-97

fdefire Irt iDigiti+

Scefire Letter a~zA-2]

fgefine Algha t(i_etter} ! {Zigitlii® ™)

Ycefire 8lank D \tAn] -

$def . e Cuote H

$cefine Backslash AT

$aef.ne Crar c(.*"W\ ] iBackslash) {Quote} ! {Backslash) {Backslash})

' 'definiticrns cf white space and ccmments

t{Blark}~+

tMe-m wn\pn

! definitions of compound symkols and keywords

AND imen
OR imee
NOT snan
IMPLIES (he>n
IFF tme=>"
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GE

NLT

~m
oA

NLE
NGE
EQV
NEQV

RANGE
APPEND

EXP

BIND
ARROW

IF
THEN
ELSE
IN

ALL
SOME

NUMBER

SUM

PRODUCT

SET

MAX TMUM
MINIMOM
UNION
INTERSECTION
SUCH

ELSE_IF

N

[0}
Z O MmO

[QICIRGaNe )

FOREACH
FROM
FUNCTION
GENERATE
HIDE
IMPORT
INHERTT
INITIALLY
INSTANCE
INVARIANT
MACHINE
MESSAGE
MCOEL

CC

LERE

{Backslash} |MOD

mxxn

e
a
1

v
]

:IF
: THEN
:ELSE

tIN

tALL

:SOME

:NUMBER

:SUM

:PRODUCT

:SET

:MAX IMUM
tMINIMUM

:UNION

: INTERSECTION
:SUCE {Blank}*THAT
tELSE{BRlank*IF

tFUNCTICON
:GENERATE
tHIDE
IMPORT
INHERIT
TINITIALLY
INSTANCE
:INVARIANT
:MACHINE
tMESSAGE
tMCZEL

el
v
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OF
OPERATOR
OTHERWISE
PERIOD
RENAME
REPLY

SEND

STATE
TEMPORAL
TIME

TC
TRANSACTION
TRANSITION
TYPE

VALUE
VIRTUAL
WHEN

WHERE

NAME

:OF
:OPERATOR
:OTHERWISE
:PERIOD
:RENAME.
:REPLY
:SIND
:STATE

s TEMPORAL
:TIME

:TO

: TRANSACTION
:TRANSITION
:TYPE
:VALUE
:VIRTUAL
:WHEN
:WHERE

:{Int}
1Inti™."{Int}
.’!IH."IH

: {Quote) {Chari*{Quote!}

:iletteri{Alpha}*

operator precedences

! Blefr mears 2+3+4 1s (2+3)+4.

$lefc *:;', IF, DO, EXCEPTION, NAME, SEMI;
$.eft f,7, COMMA;

$lefc SUCH;

$lefz IFF;

$lef: IMPLIES;

Ylef:r OR;

tlefr ANT;

flefc NOT;

$left r<r, >, '=', LE, GE, NE, NLT, NGT, NLE,
$nonasscc IN, RANGE;

flefr S, APPENC:

Rlef: fer, =7, PLUS, MINUS;

Rlef: re t/r, MUL, TIV, MOZI;

tief: UMINUS;

$lef: EXP;

Rlef: rSrL, I, i, ., DOT, WHERE;
Rlefe STAR;

(3]

tattribute declarations

L3}

! productions of the grammar

start

spec
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spec

module

type

definition

instarze

spec module

[

! A production with nothing after the "i" means the empty string
! is a legal replacement for the left hand side.

function

{0}

machine

{1

type

{1}

definition

{ }

instance ! of a generic module

{1}

opiicnally virtual FUNCTION interface messages concepts END

' Virtua. modules are for inheritance only, never used directly.

ily virtual MACHINE interface state messages transactions
is curcepts END

)
T
[T

interface mode. messages transactions

INITRNZD fcrmal _narme ‘=’ actual_name END

IN3TANCE f{oreach actual_name END

S

O
y

3o
o

focreach cliause allows defining sets of instances.
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: formal name inherits imports export

o1

! This part describes the st-_ic aspects of a module’s interface.

! The dynamic aspects of t'.e interface are described in the messages.
! A module is generic iff it has parameters.

! The parameters can be constrained by a WHERE clause.

! A module can inherit the behavior of ~ther modules.

' A mocdule can import concepts from other rodules.

' A module can export concepts for use by other modules.

inherits
: inherits INHERIT actual_name hide renames
{1

! Ancestors are generalizations or simplified views of a module.
! A module inherits all of the behavior of its ancestors.

! Hiding a message or concept means it will not be inherited.

! Inherited comporents can be renamed tc avecid naming conflicts.

r.de
HE
:
" Useful for providing limited views of an actor.
. Cifferent user classes may see differert views of a systerm.
' Messages and ccrncepts can be hidden.
rerames
: rerames RENAME NAME AS NAME
.
H
f.. frr preven:ting name conflicts wher irher.t.n:z
' ources, and fcr acapring modules for new use:n,
moze! and state components, messazes, excr .
ar. ac.crI can be renamed.
T : ame |5t FRIM
;
expore

EXPCOHT rame [1s5°
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messages
: messages message

message
: MESSAGE formal _message operator response
i}

response

: response_body
[

! response_cases
{1

response_cases

expression_list response _body response_cases

RWISE respcense bogdy

"

1
3

N
~

used ir generatlcrs

send

: cpriinal_foreact 3END actial message TC actual name whe-e
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formal_message

expression iist

! for describing state changes

¢ optiona._exception optional_formal rame formal arguments

actual message

{1

: opticrnal
{0}
where
: WHERE expression_list
{1
fprec SEMI !
cgTicnally virluail
: IRTURL
cpricnal_excegtl.con
: EXCEPTION
f$rrec SEMI
CpLicni. Inrea. n

‘e

fielc_list restr

78
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_exception optional_actual name formal arguments

must have a lower precedence than WHERE

vy

descripbe a set cof messages cr instances




concepts

concept

mode .

inivially

concepts cencept
{1}

CONCEPT formal _name ‘:’ type_spec where
! constants

i)

CONCEPT formal_name formal_arguments where VALUE formal arguments where
! functions, defined with preconditions and postconditions

(I

! data types have conceptual models for values
MCDEL formal arguments invariant

machines have conceptual models for states
STATE formal arguments invariant initially

invariants are true feor all states or instances
INVARIANT expression list

y at the begirning

TEANG acticn list where

lrarsactions are atomic.
Tne where clause can specify timing constraints.

$prec SEMI sequence
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alternatives

~

action action frrec STAR
{1}

IF alternatives FT

{}

DO alternatives OD

[

actual_name

{1}

EXCEPTION actual_name

{}

alternatives OR guard action_list

i)
guard action_list
}

{

WHEN expressicn ARRCW
.

te~pcrals temporal

TEMPORAL NAME where response

tre lcc

a at

r3

unordered seL of actions
choice
repeated choice

a normal message or subtransaction

an exception measage

arsoliute times,
the actor.

In terms ¢ a ocr cf
" The "where" cescripes tne triggering conditions
Doin terms ¢f TIME, PERICD, anc DELAY.
cgi.crnal_
.
forma. _nare
NAME fcrmzl parameters
formal_parameters ! parareter va.ues are determined at specification time

field iist '}’ where
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formal_arguments ! arguments are evaluated at run-time
' field list ')’
{1}
t
{1}
;
field_list
: field 1list ',’ field
{1
i field
(!}
field
: name_list ’:’ type_spec
)
I *$’ NAME ‘:' type_spec
{
Y
(.
type_spec
1 actual_narme ! name of a data type
i
I?I
{0}
name_list

actual_parametlers
f

a

fr

.2._parareters

parameter values are determined at specification time

i g_1ist '’

ar

$rrec SeMI ' must have a lower precedence than ’{’
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actual_arguments ! arguments are evaluated at run-time
: (7 arg_list ’)’

| Sprec SEMI ! must have a lower precedence than ’ ('
{}
arg_list
: arg_list ’,’ arg Sprec COMMA
{1
| arg
{1
arg
expression
()
! pair
{1}
expressicn list
N expression list ‘,’ expression $prec COMMA
O]
expression §prec COMMA

£}

~

exgressicn
: guantifier ’(’ field list restriction BIND expressior ')’
{0}
{ actual_name actual_arguments
{0}
| actual_name '@’ actual name actual_arguments

{1}

NOT expression fprec NOT
i)

' expressicn AND expression $prec AND
o}
exgression OR expression $prec OR
{1}
expressicn IMPLIES expression $prec IMPLIES
L}
expressiorn IFF expressicn sprec IFF
i
exgression '<' expression $prec LE
[

i expression '>' expression Sprec LE
.

. expression ’'=’' expression Sprec LE
U}

| expression LE expression Sprec LE
{1
expression GE expression Sprec LE
{0}

t exprossicn NE expression Sprec LE
{1}

| expression NLT express:oin Sprec LE
{1

| expression NGT expression tprec LE
{
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expression NLE expression Aprec LE

{1

expression NGE expression Sprec LE
{1}

expression EQV expression Sprec LE
{)

expression NEQV expression Aprec LE
{}

'-! expression Sprec UMINUS
{1}

expression ‘+’ expression Sprec PLUS
{}

expression ’'-’ expression Sprec MINUS
{}

expression ’'*’ expression Sprec MUL
{1}

expression '/’ expression sprec DIV
{}

expression MOD expression Sprec MOD
{}

expression EXP expression Sprec EXP
[

expression U expression tprec U

{1

expression APPEND expression fprec APPEND
{0}

expression IN expression fprec IN
!

’*’ expression fprec STAR

*x is the value of x in the previous state
I

'$' expression Sprec DOT
$x represents a collection of items rather than just one
' 81 = {x, $s2) means sl = union({x}, s2)
! 51 = (x, $s2] means sl = append({x}, s2)
[
expressicn RANGE expression $prec RANGE
' x irn ja .. b) iff x in {a .. b} iff a <= x <= )b

fa .. kI .s scrted in innreasing order

1
express.cn ' . NAME Sprec DOT
)

’ ’
expression '’ expression '}’ fprec DOT

‘(' expression ')’

’

{' expressicn NAME ')’ ! expression with units of measurement
! stardard time urits: NANOSEC MICROSEC MILLISEC SECONDS MINUTES HOURS
DAYS WEEKS
(]
TIME ! The current local time, used in temporal events
{4
DELAY ! The time between t-e triggering event and the resoonse
i)
PERIOD ! The time between successive events of this type
i)
literal
[
literal '€’ actual name ! literal with explicit type
{0}
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middle cases

quantifier

restricTizr

2 ! An undefined value to be specified later

e ! An undefined and illegal value

IF expression THE! expression middle cases ELSE expression FI

{1}

middle_cases ELSE_IF expression THEN expression

(1}

alLL

{}
SOME

{ }
NUMBER
{0}

SUM

{1}
PRODUCT
{0}

SET

{0}
MAXIMUM
)
MINIMUM

SUCH exgressicn

INTEGER LITERAL
{0 h
REAL_LITERAL
{0}

CHAR T ITERAL

STRING_LITERAL
{

‘4’ NAME

{0}
‘[’ expressions
[

'{’ expressions
[

!]I

[

1

enumeration type literal
sequence literal

set literal




T ‘.

{’ expressions
{1}
i ([ pair_list

expression '}’ ! map literal

;

B ! tuple literal

| *{’ NAME BIND expression '}’ ! union literal

! relation literals are sets of tuples

expressions
: expression_list

pair_list
: pair_list ’,’ pair
{1}
! pair
{1}
;
pair
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NGE
RPPEND
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APPENDIX B

1. SPECDEF SSL SPECIFICATION FILES

The following are the SSL specification files for the current version of the SPECDEF
editor. There are five modules broken down as follows: abstract syntax and template
transformations, lexemes, attribute declarations, concrete input syntax, and unparsing

schemes.

A. ABSTRACT SYNTAX AND TEMPLATE TRANSFORMATION RULES
The file abstract.ss/contains the abstract syntax grammar and the template transfor-

mation rules on that grammar for the SPECDEEF editor.

/* File: ABSTRACT.SSL */
/= */
/¥ This file cormtains the abstract syntax for the Definition Module *
i scbset of the Spec specification language for the SPECDEF editcr. */
/I It alsc ccrtains the template transformations o~ the abstrac: */
/* syrTax proaucticns. */

/* abpstraci syrtaex */

I00T start;
starst : Specispec)
cpt al ..st spec
spec : MoocleNIil() /* completing term */
MoguieFalr{module spec) /* allows addition cf
cther medulec */
moaule : DefModuleDec! (interface concepts)
/* Note: Spec grammar has been modified for this
ed.tor to go directly to the Definition
Mogule decliaration from Module */
interface : InterfaceDec ! (formal_name inherits imports export)

;
cptional inherits;
inherits : InheritNil ()
InheritPremp: () /* pl-ceholder term */
IrheritStme {interi1ts actual name hide renames)
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cprioral hide;
ride HideN:i1l{}
HidePrompt () /* placeholder term */

HideList (name_list)

.

optional renames;

renames : RenameNil () -
RenamePrompt () /* placeholder term */
! RenameStmt (renames identifier jdentifier)
optional imports; .
imports : ImportNil ()
i ImportPrompt () /* placeholder term */
i ImportStmt (imports name_list actual name)
i
optional export;
export : ExportNil ()
| ExportPrompt () /* placeholder term */
! ExportList (name_list)
opticnal where;
where : WhereEmpty ()
i WherePrompt () /* placehoider term */
WhereExp (expression_list)
cptional lisu ccncepts:
ccncepts : Con-eptNil{)
ConceptPair(cencept concepts)
ccnceps : Concep:Clomp{) /* completing term */
ConceptType (forral _name type_spec where)
ConceptValue(formali_name formal arguments where formal_arguments
wnere)
formal name : FormName {identifier formal_ parameters) -

optiona. frrra. parameters;
fcrmalspara?e:ﬂ:s : FermalParmEmpty (

TormalPer~Frorpt () /* placeholder term */
aiParmlist(field list where)

alArgtmpiy ()
alArgPromps () /* placeholder term */
alArglist(fleld _list)
freld list : Fle.clis%Comp () /* completing term */
SingieField(field)
MILTTle It Ie la linr Tielq)
field : UndefField () /* completing term */
FieldNamelis® (name_list type_spec)
fieldCollection(identifier type_spec)
Lype_spec : UndefType () /* completing term */
NamedType (actual_rame}
rare list : NameIdent (identifier)

NamePair(name_list identifier)
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actua. name : ActuaiParml

s
2]
IRl

(identifier actual_parameters)

:

optional actual_parameters;
actuali parameters : ctParmEmpty ()
- | ActParmPromp: () /* placeholder term */
! ListCfArgs(arg_list)

optional actual arguments;

actual arguments : ActualArgNil{()
| ActualArgPrompt () /* placeholder term */
! ActualArglist(arg_list)

arg_list : ArgListEmpty () /* completing term */
! SingleArg(arg)
i MultiArg(arg_list arq)

arg : ArgComp () /* completing term */
| ArgExp {expression)
| ArgPair (pair)

expressicn L.StU o EmptyExplList () /* completing terr */
SingieExp(expression)
MultiExp(expression_list expression)

express.in : UndefExp () /* completing term */
QuantifierExpl(gquantifier field_list restriction expression)
IdentExp(actual_name actual_arguments)
AtExplactual_name actual_name actual_arguments)
NotExp (expression)
AndExp (expression expression)
OrExp{expression expression)
IrpliesExp{expression expression)
IffExg (expression expression)
LessThan (expression expression)
GreaterThan (expression expressicn)
ual{expression expression
fgual{expressicn expression)
ertgual {(expression expression)
cal{expression expression)
ssTrar (expression expressicn}
reaterTrar (expression expression)
essEgua. (expression expression)
reazerEgual (expression expression)
g..va.ernt (expressicn expression)

.Q
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Subtract (expression expression)

Civide (exgression expression)
ModExp (expression expression)
Expsnert (expressicrn expression)
UExp lexpression expression)
AppendExp (expression expression)
InExp(expression expression)
Star{expression)
CcllectExp(expression)

RangeExp (expression expression)
DotExplexpressior identifier)
SgBracketbxplexpression expression)
ParerExplexpressicn)
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optional middle_cases;

middle_cases

quantifier

restriction

expressions

pair_liist

pair
integer_lit
real_lit

char_lit

|
i
|
!
|
|
|
|

;

MeasureExp (expression identifier)

TimeExp ()

DelayExp ()

PeriodExp ()

Constant (_iteral)

LiteralType(literal actual_name)

IllegalExp()

IfThen(expression expression middle_cases expression)

MidCaseNil ()
MiddlePrompt () /* placeholder term */
MidCase (middle_cases expression expression)

QuantifierComp () /* placeholder term */
All ()

Some ()
Number ()

Sum ()
Product ()}

Set ()
Maximum{)
Minimum()
Union ()
Intersection ()

RestrictComp () /* placeholder term */
RestrictNil ()
SuchThat (expression)

EmptyLiteral() /* placeholder term */
IntlLiteral(integer lit)
Realliteral (real_lit)

Charliteral (char_lit)

tringlLiteral (string_ lit)
Enumeration(identifier)

Sequence (expressions)

Setliteral (expressions)
Mapliteral (expressions expression)
Tupleliteral(pair_list)
OreOfLiteral (pair)

ExpressionsComp () /* placeholder term */
ExpressionsNil ()

ExpressionslList (expression_list)
PairListComp() /* placeholder term */
SinglePair (pair)

MultiPair{pair list pair)

PairBind(name_list expression)

IntConstant (INTEGER_LIT)

RealConstant (REAL_LIT)

CharConstant (CHAR_LIT)




string_ lit H StringCcnstant (STRING_LIT

identifier : Identifier {ICENTIFIER)

~

/* template commands °~/

. transform inherits
on "empty” <inherits>: InheritNil (),
on "addinherit" <inherits>: InheritStmt (<inherits>, <actual_name>,

<hide>, <renames>)

’

transform hide
on "empty™ <hide>: HideNil(),
on "addhide"” <hide>: HideList (<name_list>)

’

transform renames
on "empty" <renames>: RenameNil (),
on "addrename® <renames>: RenameStmt (<renames>,<identifier>,<identifier>)

transform imports
on "empty"” <imports>: ImportNil (),
cn "addimpecrt™ <imports>: ImportsStmt (<imports>, <name_list>, <actual_name>)

:

transform export

on "ermpty” <expcrt>: ExportNil(),
cn "aadexpcri"™ <expcori>: ExportList (<name list>)
‘
transform where
or "empty" <where>: WhereEmpty ().
or "addwhere"” <where>: WhereExp {<expression_list>)
H
transforr ccncept
on "type"” <concepti>: ConceptType (<formal_name>, <type_ spec>, <where>},
on "val.ue” <concept>: ConceptValuve (<formal_name>,<formal_arguments>,

<where>, <formal_ arguments>, <where>)
H
transfcrm formal parameters
<formal paramezers>: FormalParmEmpty (),
orn "field.1st" <formal parameters>: FormalParmList (<field list>, <where>)

Ar Namne un
cn "empty

;
transfcrr formal argurents
n

empLy” <fcrmal arguments>: FormalArgEmpty (),
on "fieldiist"™ <formal_arguments>: FormalArgList (<field_list>)

or.
transfcrr fileld list

cn "sinole" <field list>: SingleField(<field>),

un "ro.tiple” <fleld_lisi>: MultiField(<field list>,<field>)

transform field
on "namelist" <field>: FieldNameList (<name_list>, <type_spec>),
on "collection® <field>: FieldColiection(<identifier>,<type_spec>)

’

transform type spec
on "named" <iype spec>: NamedType (<actual name>)

’

transform name_list

on "sirgle® <name_list>: Nameldent (<identifier>),
- on "multiple” <name_list>: NamePair (<name_list>,<identifier>)
;
91




transform actual_parameters

on “empty" <actual_parameters>: ActParmEmpty (),
on “argiist"® <actual_parameters>: ListOfArgs(<arg_list>)

7

transform actual_arguments

or "empty” <actual_arguments>: ActualargNil (),
on "arglist”® <actual_arguments>: ActualArglist (<arg_list>)

;
transform arg_list
on "single” <arg_list>:
on "multiple” <arg_list>:

’

transform arg
on "expression™ <arg>:

SingleArg(<arg>},
MultiArg(<arg_list>,<arg>)

ArgExp (<expression>),

on "bindpair”® <arg>: ArgPair (<pair>)
transform expression_list
on "single™ <expression_list>: SingleExp (<expression>),
on "multiple”™ <expression_list>: MultiExp (<expression_list>, <expression>)

7

transform expressicn

on "guantify” <expression>:
on "actname” <expression>:
on "g" <expressicn>:
Mol Seapression>:
on "g" <expression>:
on " " <expression>:
on "implies" <expression>:
on Tiff" <expression>:
on "<" <expressiond:
on ">" <expression>:
on "=" <expression>:
on "<=" <expressiond:
on ">=" <expression>:
cn M.=" <expression>:
on "~<® <expression>:
on "~>" <expression>:
on "~<=" <expression>:
on "~>=" <expression>:
n M==" <expressicn>:
cn "~==" <expression>:
or. "uminus” <expression>:
on "+" <expressiond>:
or "-" <expression>:
on =N <expression>:
on /" <expression>:
on "mod" <expression>:
on "wwn <expression>:
on "y° <expression>:
on "“append” <expression>:
on "in_exp" <expression>:
on "star" <expression>:
on "collect"” <expression>:
on "range"” <expression>:
on “"dot™ <expression>:
on "[}"™ <expression>:
on "parens” <expression>:
on “measure” <expression>:
on "time" <expression>:

QuantifierExp(<guantifier>,<field_list>,
<restriction>, <expression>},

IdentExp(<actual name>,<actual_arguments>),

AtExp(<actual_name>,<actual_name>,
<actual_arguments>),

NotExp {<expression>},

AndExp (<expression>,<expression>),

OrExp {<expression>, <expression>),

ImpliesExp (<expression>,<expression>),

1ffExp(<expression>, <expression>),

LessThan (<expression>, <expression>),

GreaterThan (<expression>, <expression>),

Equal (<expression>, <expression>),

LessEqual (<expression>, <expression>),

GreaterEqual (<expression>, <expression>),

NotEqual (<expression>, <expression>),

NotLessThan (<expregsion>, <expression>),

NctGreaterThan (<expression>, <expression>),

NotLessEqual (<expression>, <expression>),

NotGreaterEqual (<expression>, <expression>),

Equivalent (<expression>, <expression>),

NotEquivalent (<expression>, <expression>),

UnaryMinus (<expression>),

Add (<expression>, <express.on>j,

Subtract (<expression>, <expression>),

Multiply (<expression>,<expression>),

Divide (<expreasion>, <expression>},

ModExp (<expression>, <expression>),

Exponent (<expression>, <expression>),

UExp (<expression>, <expression>),

AppendExp (<expressjion>, <expression>),

InExp (<expression>, <expression>),

Star (<expression>),

CollectExp (<expression>),

RangeExp (<expression>, <expression>),

DotExp (<expression>,<identifier>),

SqBracketExp (<expression>, <expression>),

ParenExp (<expression>),

MeasureExp (<cexpression>, <identifier>),

TimeExp ().,
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on
on
on
on
on
on

;

transform
on
on

’

transform
on
on

on

r
sl

1

o}

n

h

o

rt
33

"delay”
"period”
"constant"
"lit_type™
"illegal"”
®*if then"

middle_cases
"empty"
"middle"”

quantifier
*all"”
®*some"
*number”
®sum®”
"product”™
"set™
"max"
Tmin®
funicn”

"intersect”

restriction
"empty

"suchthat"

literal
"ipL"®
"real il
"char lit"

"str lit"

"enum”
nseq®

<expression>:
<expressicn>:
<expression>:
<expression>:
<expression>:
<expression>:

<middle_cases>:
<middle_cases>:

<quantifier>:
<quantifier>:
<quantifier>:
<quantifier>:
<quantifier>:
<quantifier>:
<quantifier>:
<quantifier>:
<quantifier>:
<guantifier>:

<restrictien>:
<restriction>:

<literal>:
<literal>:
<literal>:
<literal>:
<literal>:
<literal>:
<literal>:
<l.teral>:
<literal>:

<literal.,:

<expressions>:
<expressions>:

<pair_liist>:
<pair 1iisi>:

DelayExp (),

PeriodExp(),

Constant (<literal>),

LiteralType (<literal>, <actual_name>),

IllegalExp (),

1fThen (<expression>, <expression>, <middle_cases>,
<expression>)

MidCaseNil (),
MidCase (<middle_cases>, <expression>, <expression>)

All(),

Some (),

Number (),
sum{(),

Product (),

set ().,
Maximum(),
Minimum(),
Union{),
Intersection{)

RestrictNil (),
SuchThat (<expression>)

IntLliteral (<integer_lit>),
Realliteral(<real_lit>),

Charliteral (<char_lit>),
StringLiteral(<string lit>},
Enumeration(<identifier>),

Sequence (<expressions>j,

SeiLiiteral (<expressions>),

Mapliteral (<expressions>, <expression>),
Tupleliteral (<pair_list>},

Onelfliteral (<pair>)

ExpressionsNil{(),
Expressionslist (<expressior_list>)

SinglePair{<pair>),
MultiPair(<pair_list>,<pair>)
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B. LEXICAL PHYLA DECLARATIONS
The file loxameas.ss! contains the declarations of the lexemes for the SPECDEF

editor (i.e., the keywords, puncutation marks, and other special characters.

/* File: LEXEMES.SSL *x/
/™ */
/= This file contains the lexeme declarations for the SPECDEF editor */

/* lexemes */
WHITESPACE:

AND:

OR:

NOT:
IMPLIES:
IFF:

M2 2Z Z 2 2Z ¢ttt 0
OO Ot mim a3
< 9 +3 43 e «s ee

SOME :
NUMBER:
SUM:
PRODUCT:
SET:
MAXIMUM:
MINIMUM:
UNION:
INTERSECTION:
SUCH:
ELSE_IF:

Whitespace< [\ \t\n]* >;

AndLex< "g" >;
OrLex<s " (" >;
NotLex< "~" >;
Implieslex< "=>" >;
Ifflex< "<=>" >;

GtLex< ">" >;
LtLlex< "<" >;
LeLex< "<=" >;
GelLexs ">=" >;
Nelex< "~=" >;
NltlLex< "~<" >;
Ngtlex< "~>" >;
Nlielex< "~<=" >;
Ngelex< "~>=" >;
Eqvlex< "==" >;
Negvlex< "~==" >;

Rangelex< ".." >;
Appendlex< ".i"
ModlLex< "\\" >;
Explex< "r*r >,
Bindlex< "::" >;

Iflex< "IF" >;
Thenlex< "THEKN" >;
Eiselex< "ELSE" >;
InlLex< "IN" >;
ULex< ™" >;

Alllex< "ALL"™ >;

Somelex< "SOME"™ >;

NumberLex< "NUMBER"” >;

Sumlex< "SUM" >;

ProductLex< "PRODUCT" >;

Setlex< "SET" >;

Maximumiex< "MAXIMUM" >;
MinimumlLex< "MINIMUM" >;
UnionLex< “UNION" >;
IntersectLex< "INTERSECTION" >;
SuchLex< "SUCH" [\ \t\n]+"THAT" >;
ElseIflex< "ELSE"[\ \t\n}+"IF" >;




AS:
CONCEPT:
DEFINITION:
DELAY:
END:
EXPORT:
FIl:
FROM:
HIDE:
IMPORT:
INHERIT:
PERIOD:
RENAME :
TIME:
VALUE:
WHERE :

SEMI:
COMMA:
PLUS:
MINUS:
MCL:
CIv:
UMINUS:
20T:

STAR:

INTEGER LIT:

REAL _LIT:
CHAR _LIT:

STRING _LIT:

Aslex< "AS" >;
ConceptLex< "CONCEPT" >;
Defnlex< ®DEFINITION" >;
DelayLex< “DELAY"™ >;
EndlLex< "END" >;
Exportlex< "EXPORT" >;
Filex< "FI" >;

FromlLex< “FROM" >;
HideLex< ®“HIDE" >;
ImportLex< "IMPORT" >;
InheritLex< "INHERIT" >;
PeriodLex< ™PERIOD™ >;
Renamelex< "RENAME" >;
TimeLex< "TIME" >;
Valuelex< "VALUE" >;
Wherelex< ®"WHERE” >;

SemilLex< ";" >;
Commalex< ®," >;
Pluslex< "+" >;
Minuslex< "-% >;
MulLex< "*" >;
Divlex< "/" >;
Uminuslex< "=-" >;
Dectiex< "." >;
Star.ex< "*" >;

Integerlex< [0-9)+ >;
Reallex< {0-9]+"."{0-91+ >;
Charlex< ™' "{*\ni™'" >;
Stringlex< ["]["™\\j=*{"] >;
Identlex<

[a-zA-2] {a~2A-2_0-91* >;

C. ATTRIBUTE DECLARATIONS
The file attribs.ss/ contains the attribute declarations

concrete input syntax for textual input.

/* File ATTRIBS.SSL

/'

/™ file contains the attribute declarations for
/* synzax for the SPECDEF editor,

/* association between abstract syntax and

Module
Interface
Inherits
Hide
Renames
Imports
Export
Where
Concepts
Ccncept
Forra.Nare

{

{
{
{
{
{

f
{
¢
{

syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn

module
interface
inherits
hide
renames
imports
expors
where
concepts
concept
formal_name

t;
t;

"
L PR

[AAN 2 e BN NN A AN G NN o SN o ]
s

and replacement rules for the

*/
*/
the concrete */
*/

concrete input syntax */

b
)
bi
}s
b
}:
bz
};
P
V;

I
s
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FormalParm {
FormalArg {
FieldlList {
Field {
TypeSpec {
NamelList v
ActualName {
ActualParm {
ActualArgs {
Arglist {
Arg {
ExplList {
Exp {
MiddleCases {
Quantifier {
Restriction {
Literal {
Expressions {
Pairlist {
Pair {
Integerlit {

{

{

{

syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn

formal_parameters
formal_ arguments
field_list

fie=ld

type_spec
name_list
actual_name
actual_parameters
actual_arguments
arg_list

arg
expression_list
expression
middle_cases
quantifier
restriction
literal
expressions
pair_list

pair

integer_lit
real_lit

nar_lit
string_lit
1dentifier

/* replacement rules */

module ~
interface ~
inherits ~
ride -~
renames ~
impert ~
export ~
where ~
concepts ~
concept ~
formal_nare ~

forma. _parameters
formal argurments ~

field liist ~
field ~
type_spec ~
name_.ist ~
actual name ~

actual _parame-ters
actual_arguments -~

arg_list ~
arg ~
expression_liist ~
expression ~
middle_cases ~
quantifier -~
restriction ~
literal -
expressions ~
pair_list ~
pair ~

Module.t;
Interface.t;
Inherits.t;
Hide.t;
Renames.t;
Imports.t;
Export.t;
Where.t;
Concepts.t;
Concept.t;
FormalName.t;
FormalParm.t;
FormalArg.t;
Fieldlist.t;
Field.t;
TypeSpec.t
Namelist.t;
ActualName.t;
ActualiParm.t;
ActualArgs.T;
Arglist.t;
Arg.t;
Explist.t;
Exp.t;
MiddlieCases.t;
Quantifier.t;
Restriction.t;
Literal.t;
Expressions.t;
Pairlist.t;
Pair.t;

;

t;
t;
i
t;
t;
t?
t;
t;
t;
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integer_lit ~
reai_litc ~
char_lit ~
string_litc ~
identifier ~

Integerlit.t;
Reallit.t;
Charlbit.t;
Stringlit.t;
Ident.t;

D. PRECEDENCE RULES AND CONCRETE INPUT SYNTAX
The file concrete.ssl contains the precedence and associativity rules for the concrete

input syntax, plus all the concrete parsing declarations.

/* File: CONCRETE.SSL */
/* x/
/* This file contains the precedence and associativity declarations */
/= anc the concrete input syntax parsing rules for the SPECDEF editcr. */
/* precedence and asscclativity declaraticns */
lefc ;' IF IDENTIFIER SEMI;
lefc ', COMMA;
tef: SUCH;
lefe IFF;
iefr IMPLIES;
lefs ‘v’ COR;
ief: &’ ANI;
left f~’ NOT;
left '<! >’ ’=' LE GE NE NLT NGT NLE NGE EQV NEQV;
rnonassoc  IN RANGE;
left U APPENZ;
lefe f4r 7ot PLUS MINUS,
lefs Ferof/r MUL DIV OMOD;
lefr UMINUS,
left EX2;
iefr £§0 e tar ar 27 DCOT WHERE;
lef STAR;
/* inpot syntax */
Modu.e t:= (SEFINITION Interface Concepts END)
{Module.t = DefModuleDecl{Interface.r,Concepts.t);}
Interface ::= (FcrmalNare Inherits Imports Export)

{Interface.t = InterfaceDecl (FormaiName.t, Inherits.z,
Imports.t,Export.t);}
Inherits = () {$8.t = InheritNil();}
(INHERIT Inherits ActualName Hide Renames)
{InheritsS$li.t = InheritStmt(Inherits$2.t,ActualName.t,
Hide.t,Renames.t});}

Hide HE I | {$$.t = HideNil();}
(HIZCE Namelisct) {Hide.t = HideList (Namelist.t);}

Renames r:= () {5%5.t = RenameNil{(});}

| (Renames RENAME Ident AS Ident)
(ReramesSi.t = RenameS:m: (RenamesS2.t, IdentSli.t,IdentS2.t);}
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Impecres

Export

Where

Concepts

Concept

FormaiName

Fieldlist

TypeSpec

Namelis:

ActualName

ActualParm

ActualArgs

Arglist

() 185.t = ImportNil{();}
(Impcrts IMPCRT Namelist FROM ActualName)
{Imports$Si.t = ImportStmt {ImportsS2.t,NamelList.t,ActualName.t);}

() {$5.t = ExportNil{}:}
(EXPORT Namelist) {Export.t = Exportlist (Namelist.t);}

(prec SEMI) {$$.t = WhereEmpty ()}
(WHERE Explist) {Where.t = WhereExp(ExpList.t);}
(Concept) {Concepts.t = (Concept.t :: ConceptNil);}

Concept Concepts)
{Concepts$Sl.t = (Concept.: :: Concepts$2.t);}

(CONCEPT FormalName ’:’ TypeSpec Where)
{Concept .t = ConceptType (FormalName.t, TypeSpec.t,Where.t);}
(CONCEPT FormalName FormalArg Where VALUE FormalArg Where)
{Concept .t = ConceptValue(FormalName.t,FormalArg$l.t,WhereS$l.t,
FormalArg$2.t,Where$2.t};}

{Ident FormalParm)
{PormalName.t = FormName (Ident.t,FormalParm.t);}

(9] {$$.t = FormalParmEmpty();}
(*{' Fieldlist '}’ Where)
{FormalParm.t = FormalParmlList (FieldList.t,Where.t);!

8] {$$.t = FormalArgEmpty():}
(' (’ FieldList ’}*)
{FormalArg.t = FormalArgList (FieldList.t);}

(Field) {Fieldlist.t = SingleField{(Field.t};}
{(FieldList ',’ Field)
{FieldList$l.t = MultiField(FieldList$2.t,Field.t);}

'2") {Field.t = UndefField{();}
(Namelis. ':' TypeSpec)

{Fieid.t = FieldNamelist (Namelist.t,TypeSpec.t);}
('S’ Idert ’':’ TypeSpec)

{Field.t = FieldCollection(Ident.t,TypeSpec.t);}

(r2") {TypeSpec.t = UndefType();}
(ActualName) {TypeSpec.: = NamedType (ActualName.t);}

(Idenz) {Name_ist.t = Nameldent (Ident.t);}
{(Namelist ',' Ident)
{NameList$l.t = NamePair (Namelist$2.t,Ident.t);}

(Idert ActualParm)
{ActualName.t = ActualParmlList (Ident.t,ActualParm.t);}

(prec SEMI) {85.t = ActParmEmpty();}
('{" Arglist '}") {ActualParm.t = ListOfArgs(ArglList.t});}

(prec SEMI) {$5.t = ActualArgNil();)
(' {* ArglList ')") {ActualArgs.t = ActualArglist (ArgList.t);)}
(Arg) {Arglist.t = SingleArg(Arg.t);}

{Arglist ',’ Arg prec COMMA)
(ArglistSi.t = MultiArg(ArgList$2.t,Arg.t});}
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Arg 1= (Exp) {Arg.t = ArgExp(Exp.t);}
(Pair) {Arg.t = ArgPair(Pair.t);}

Explist ::= (Exp prec COMMA) {Explist.t = SingleExp{(Exp.t);}
| (Explist ',' Exp prec COMMA)
{ExpList$l.t = MultiExp(ExpList$2.t,Exp.t);}

Exp si= (127) {Exp.t = UndefExp();}
(Quantifier 7 (’ FieldList Restriction BIND Exp ‘)’)
{ExpSl.t = QuantifierExp(Quantifier.t, FieldList.t,
Restriction.t,Exp$2.t);}
i (ActualName ActualArgs) (Exp.t = IdentExp(ActualName.t,ActualArgs.t);}
! (ActualName ‘@  ActualName ActualArgs)
{Exp.t = AtExp(ActualNameSl.t,ActualName$2.t,ActualArgs.t);}

| ('~' Exp prec NOT) {ExpS$l.t = NotExp(Bxp$2.t);}
! (Exp ‘&' Exp prec AND) {ExpSl.t = AndExp(ExpS$2.t,Exp$3.t);}
| (Exp ‘|’ Exp prec OR) {ExpS$Sl.t = OrExp(Exp$2.t,ExpS$S3.t);}

i (Exp IMPLIES Exp prec IMPLIES)
{Exp$l.t = ImpliesBxp(Exp$2.t,Exp$3.t);}

(Exp IFF Exp prec IFF) {ExpSl.t = IffExp(Exp$2.t,Exp$3.t);}
' (Exp ’'<' Exp prec LE) {Exp$l.t = LessThar(Exp$2.t,Exp$3.t);}
(Exp '>’' Exp prec LE) {Exp$l.t = GreaterThan(Exp$2.t,ExpS3.t),}
; (Exp '=' Exp prec ’'=’} {ExpS$l.t = Equal(Exp$2.t,ExpS$3.t);}
. (Exg LE Exp prec LE) {ExpSl.t = LessEqual(Exp$2.t,ExpS$3.t);}
; (Exg GE Exp prec LE) {ExpSl.t = GreaterEqual (Exp$2.t,ExpSi.%);:
' (Exp NE Exp prec LE) {ExpS$l.t = NotEqual(Exp$2.t,ExpS$3.L);}
! {Exp NLT Exp prec LE) {Exp$Sl.t = NotlessThan(Exp$2.t,Exp$3.t);}

{Exg NGT Exp prec LE)

{Exp$l.t = NotGreaterThan(Exp$2.t,Exp$3.t);}
(Exp NLE Exp prec LE) {Exp$l.t = NotLessEqual (Exp$2.t,ExpSi.2) ;)
(Exp NGE Exp prec LE)

{ExpSl.t = NotGreaterEqual(Exp$2.t,Exp$3.t);}

(Exp EQV Exp prec LE) {ExpSl.t = Equivalent (Exp$2.t,ExpS3.t);}
(Exp NEQV Exp prec LE) {Exp$l.t = NotEquivalent (Exp$2.t,ExpS3.t); )
(UMINUS Exp prec UMINUS) {ExpSl.t = UnaryMinus(ExpS$2.t):;}

(Exp '+’ Exp prec PLUS) {ExpS$l.t = Add(Exp$2.t,ExpS$3.%);)

(Exp '~’ Exp prec MINUS) {ExpSl.t = Subtract (Exp$2.t,ExpS3.t); ¢
{Exg ‘*’ Exp prec MUL) {ExpSl.t = Multiply(ExpS$2.t,ExpS2.t);:
(Exp '/' Exp prec DIV) {ExpSl.t = Divide (ExpS2.t,Exp$3.2),1}

(Exp MCC Exp prec MOD) {ExpSl.t = ModExp(Exp$2.t,ExpSt.%) ;!

{Exp EXP Fxp prec EXP) {Exp$l.t = BExponent {(ExpS2.:,ExpS3.z);>
(Exp U Exp prec U) {ExpS§l.t = UExp(ExpS2.t,ExpS$3.t);}

(Exp APPEND Exp prec APPEND) {ExpSl.t = AppendExp(Exp$2.t,ExpSZ.t);}
(Exg IN Exp prec IN) {Exp$l.t = InExp(ExpS$2.t,ExpS$3.t);}

(**' Exp prec STAR) {(ExpSl.t = Exp$2.t;}

('S’ Exg prec DOT) {ExpSl.t = CollectExp(ExpsS2.t});}

(Exp RANGE Exp prec RANGE) {Exp$l.t = RangeExp(ExpS$2.t,ExpS$Z.t);:
(Exg '.’ Ident prec DOT) (Exp$l.t = DotExp(Exp$2.t,Ident.t);}
(Exp ’{' Exp ')’ prec DOT) (Exp$l.t = SqBracketExp(Exp$2.t,Exp$3.t};}

(' (¥ Exp )') {(Exp$l.t = ParenExp(ExpS$2.t);)

(' (* Exp Ident ')’) {Exp$l.t = MeasureExp(Exp$2.t,ldent.t);}
(TIME) {§$.t = TimeExp();}

(DELAY) {$5.t = DelayExp(}:;}

(PERIOD) ($5.t = PeriodExp();}

(Literal) {Exp.t = Constant(Literal.t});}

! (Literal '@’ ActualName)
{Exp.t = LiteralType(Literal.t,ActualName.t};}
i (' {$$.t = TllegalExp():}
| (IF Exp THEN Exp MiddleCases ELSE Exp FI)
{ExpSl.t = IfThen(Exp$2.t,BxpS3.t,MiddleCases.t ExpS4.t);}
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M:id.eCases si= () {$S.t = MidCaseNil():)}
(MiddleCases ELSE_IF Exp THEN Exp)
{MiddleCasesS..t = MidCase (MiddleCasesS$S2.t,ExpSl.t,ExpS2.t);}

Quantif:er 1= (ALL) {$s.t = AL1():)
{SOME) {$$.t = Some{);}
H {(NUMBER) {$$.t = Number();)}
; {SUM) {$$.t = Sum{);}
{PRODUCT) {$s.t = Product();}
: (SET) {$S.t = Set ();}
| (MAXIMUM) {$$.t = Maximum{);}
i (MINIMUM) {($$.t = Minimum();}

! (UNION) {$5.t = Union();}
! (INTERSECTION) {$%.t = Intersection();}

Restriction = () {$5$.t = RestrictNil();)}
i (SUCH Exp) {Restriction.t = SuchThat (Exp.t);)
Literal ::= (Integerlit) {Literal.t = Intliteral(Integerlit.t);}
(Reallit) {Literal.t = Realliteral (RealLit.t);]}
| (CharkLit) {Literal.t = Charliteral{Charlit.t);)}
I (Stringlit) {Literal.t = StringlLiteral(Stringlit.t);;
(%' Ident) {Literal.t = Enumeration{ldent.t);)
("' Expressions "}%) {Literal.t = Sequence (Expressions.t);}
(¢’ Expressions '}')} {Literal.t = Setliteral(Expressions.t):}

(*{’ Express:ions ;' Exp '}’)
{Literal.t = Mapliteral (Expressions.t,Exp.t);)
(*{’ PairList ")’} ({Literal.t = TupleLiteral(PairList.t);}

(*i' Paxr '})’") {Literal.t = OneOfLiteral (Pair.t);}
Express.:ons HE N ] {$$.t = ExpressionsNil{();}

(Explist) { xpressions.t = ExpressionsList{(Explist.t);}
PairiL.st t:= (Pa:ir) {PairlList.t = SinglePair{(Pair.t);)}

{(Pairlist ',’ Pair) {(PairlList$l.t = MultiPair({Pairlist$2.t,Pair.t);}

Pair i:s {(Na~el_.s: BIND Exp) {(FPair.t = PairBind(Namelist.t,Exp.t);}
Integerl .- ti= (INTECER_LIT) {Irtegerlit.t = IntConstant (INTEGER_LIT);)}
Rea.l:.: ;:= (RIAL_LIT iReallit.t = RealConstant (REAL LIT):)
Charl ’ = (THAR LITy {CrarLit.t = CharConstant (CHAR_LIT);)

N LI iStringlit.l = StringCeonstant (STRING LI7)::

Ider: prs {ITENTIFIER: {ldent.t = Identifier (IDENTIFIER)}
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E. UNPARSING SCHEMES

The file unparse.ss/ contains the unparsing declarations for the display represen-

tadon of the constructs for the SPECDEF editor.

/% File: UNPARSZ.SSL
/i
/" This file contains the unparsing rules for the SPECDEF editor.

modute

renames

wnere

concepts

cecncept

formal nare

Spec

ModuleNil
ModulePair

DefModuleDecl

InheritStmt

HideNil
HidePrompt
Hidelist

RenameNil
RenamePrompt
RerameSumt

RN

ConceptNil
ConceptPair

ConcepiZorp
ToncepiTlype

ConceptValue

Al
(e}

rmName
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A~ ["sn8%n")] @ )

"DEFINITION ™ & £ "%n"
"END" !

g "%t" g € @ "sb&n" ]

"<inherit>" )

*/
*/
*/

8 "$n""INHERIT " @ "%t™ € @"%b" ]

f<hide>" ]
"§n""HIDE " € j

"<rename>" ]
€ "Sn""RENAME " g " AS " @ )

"<import>" ]
€ "&n""IMPORT " @ " FROM ™ @

"<export>" ]
"$n""EXPORT "™ @

"<where>" ]
"WHERE " & )

1
~ e

" <concept>™ ]
"StAN""CONCEPT ™ @ "
@ "SbAbsn" ]

]

" @ "fuan"

“"StAr""CONCEPT ™" @ " " € ™ ™ g "StAn"
"VALUE ™ € "sn"™ £ "%bi¥bAn" |

e~ "8




forma._parameters : FormalParmEmpry [ * : ]
| FormalParmPrompt [ " ::= "<formal parm>" ]
i FormalParml_ist [ ~ = """ g "} @)
formal arguments : FormalArgEmpty | *~ : ]
! FormalArgPrompt { * ::= "<formal args>" ]
{

FocrmalArglist fMre (™M@ M) )

field list H FieldListComp [ » :1:= "gfield>" ]
| SingleField [ » 1= @]
f MultiField [ » =8 ", ™ @]
field : UndefField [~ s:m ®2% )
| FieldNameList [~ s:= @ " : " @8]
! FieldCollection { * ::= "§™ @ = : ® g ]
type_spec : UndefType [~ t:m ™27 ]
i NamedType [ =~ 1= @ ]
name_liiszt : NameIdent [~ 1:= 8]
NamePair [ ~ =@ ", "8 )
actua. _rame : ActpalParmlist [ ~ ::= @ ™ ™ @)
aciia. _parametlers ActParmEmply [~
ctParmPrompt { % ::= "cactual_parm>" |
! ListOfArgs [~ 1= ™{" @ "}" ]
aciual_argurents ActualArgNil [~z
ctualArgPrompt [ * ::= "<cactual_arg>” ]
ActualArglist [~ =" "m" )
arg_.ist : ArglistEmpty [ ~ 1= "<arg>" )
SingleArg [ ~ 1= @)
MulitiArg {~ =8 ", "€ ]
arg : ArgComrgp [~ 1= "<arg>" ]
ArgExp [~ 1= £ ]
ArgPair % = RO
express.cs_.l.st o, EmpryExplist { ~ ::= "<expression_list>" ]
SirgleExp [ ~ =80 ]
MultiExp [~ =8 ", "8 )

expressicr H Unde fExp [~ 2= ™27 ]
Quantif.erExp [~ 1= "§{™ @ (" @ "%0" €& "%)% (%o :: " @ ")% "
IdentExp [ ~ 1:= @ 8}
AtExp { » ::= @ "™ 8 8]
NotExp [ ~ i3m ™% @ ]
AndExp [ ~ t:= "%{" @ "8§(80 & " € "S$]%}" ]
! OrExp [~ t:= *§(™ @ “%(% | ™ & "%N]%}" )
! ImpliesExp [ ~ t:= "8{" @ "%{% => " & "%]}8)}" )
i IffExp [ % s:= "%{" @ “$(% <=> " @ "§)%)}" )
| LessThan [ A t:= "§(™ @ "8$(80 < " & "N]N}™ ]
GreaterThan [~ t:= "§Ii™ @ "8§{8% > " @ "$]%}" ]
! Equal [~ i:= "8{" @ "S[% = " & "V)&}" )
: LessEqua’ [ ~ t:= "8({" @ "8[8%0 <= " @ "§]§)}" ]
i GreaterZqg [ % t:= “§(" @ "§[8%0 >= " 8 "%)8%)" )
i NotEqual T2 = "R(" @ "§(80 ~= " @ "R]%)" ]
NotLessThan A rr= "K{" @ "%(%0 ~< " @ "R]8}" ]
NotGrea“ arTha". | 7~ :1:= "%{" € "§(% ~> " @ "%]%}" ]
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middie_cases

quantifier

restricL.on

iiteral

NotLessEqual
NotGreaterEqual
Equivalent
NotEquivalent
Cnaryminus
Add

Subtract
Multiply
Divide
ModExp
Exponent
UExp
AppendExp
InExp

Star
CollectExp
RangeExp
DotExp
SqBracketExp
ParenExp
MeasureExp
TimeExp
DelayExp
PericdExp
Constant
LiteralType
IllegalExp
IfThen

MidCaseNil
MiddlePrompt
MidCase

QuantifierComp
all

Scme

Number

Sum

Product

Set

Maximurm
Minimom

.....

RestrictNil
suchThat

EmptyLiteral
Intliteral
Realliteral
Charliteral
StringLiteral
Enumeration
Sequence
Ssetliteral

e e e o e e tm o e e R b e P s e e e e ey e

> > >

>

HH $
FERILN IILED
= "{" R )" ]

pix "§{" 8 "V (%0
1= "§{" B "% (%0
tix "§(" @ "8 [4%o

L)
L3
-
~—
3
L

"% (%0

*

a2
m M D ™
e s b

" 85 8 3
~
1 §

W

e LA 2 A e ]
"s{" & "%
"${" & "s([%0
"${" 8 "% (%0
LR 2] G J

"s" @)
eg~.."8e]

e ~.~e]

R R R EREEEER

1i= @ I[- ] -]- ]

tie M(W Q@ )" b}
= (P @R "M)" ]

: "TIME" ]

"DELAY" ]

: "PERIOD"™ ]

1= @)
1= @ "@g" € ]

niw ]

~<= " g "yly)"
~d>= " e u‘]‘)-
== " @ "8]%)" ]
~== " 8 "¥]N}"

v - e -‘]‘)I ]
1L =8 "s)s= )
IN " @ "§)%)}" )

]

)

t:1= "$(""IF " @ "St%oib THEN " £ "%tiotb"

@ "%t%o¥b ELSE " @

.ALL" ]
"SOME" ]
"NUMBER" ]

T "SUM" ]

"PRODUCT" 1]
"SET" )
"MAXIMUM" ]
"MINIMUM" )
"UNION"™ ]

" INTERSECTION"

=]

P
]

= "cliteral>" ]
= 8 ]

« cr er se se
L]

"
1 ® D
B s

e )
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1= "%(" @ "%0 ELSE IF " € "8%oc THEN ™ @ "%!" ]

t= "<quantifier>® ]

1
4

1= "<restriction>” ]

* SUCH THAT " € )
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i MaplLiteral [ = (@ " "R "N

| Tupleliteral [ ~ o= (" @ "]" ]
! OneOflLiteral [~ ore= "™ 8 ") ]
expressions : ExpressionsComp { * ::= "<expressions>" ]

| ExpressionsNii [ *~ ::= ]
i Expressionslist [ ~ ::= 8 ]

pair_last : PairlListComp [~ ::= "<pair_list>" ]
i SinglePair [ ~ ::= 8]
J MultiPair [~ 2= @ ", @]
;
pair H PairBind [ ~ s:m B " 22 % @]
integer_lit : IntConstant [ » 1= ~ ]
real lit : RealConstant [~ 3= ~ ]
char_lit : CharConstant [~ = ]
string_liz : StringCenstant [ * ::= * )
identifier : Identifier { ~ se= ~ ]
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APPENDIX C

L. USER’S MANUAL FOR THE SPECDEF EDITOR

The SPECNEF editor is a syntax directed editor for writing Spec specification
language definition modules. A syntax directed editor, also known as a language-based
editor, is one in which the programs and systems are created and modified according to
the syntactic structure of the language. The programs are represented internally as
abstract syntax trees, or parse trees, that are built by the editor through constructive
commands entered by the user.

The "programs” that are manipulated in the SPECDEF editor are actually specifi-
cations, not compilable programs. However, the Spec language has a very well-defined
syntactic structure, just like most programming languages, so a syntax directed editor
works just as well for Spec as it does for any structured programming language.

The SPECDEF editor uses the principle of immediate computation to analyze the
syntactic correctness of the abstract syntax tree as it is being constructed. This means
that as the user enters each additional component to the parse tree, or modifies an existing
component, the entire tree is re-analyzed to see if the addition or modification maintains
a correct syntactic structure. If it does not, the user is immediately signalled that a syntax
error has occurred, which must be corrected before the editor will allow the user to add

any more components. In this way, the editor ensures that only syntactically correct (i.e.,
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error-free) specifications are written. This is the key feature of any syntax directed
editor.

This editor was created using the Synthesizer Generator, a CASE tool for generating
syntax directed editors from an editor specification file containing the grammar rules (the
abstract syntax), the display representation (known as the unparsing scheme), and the
concrete input syntax rules of the language for which the editor is designed, in this case

Spec.

A. STANDARD FEATURES

Each editor specification results in an editor with distinct characteristics that are
language-dependent. However, there is a generic user interface common to all editors
created by the Synthesizer Generator. A few of the interface features have minor
differences dependent on the windowing system for which the editor is targeted. These
differences are indicated where applicable.

Throughout this user’s manual, editor system commands are written in boldface.
Many of these commands have oue or more key-bindings, which are indicated by the text
between angle brackets (e.g., < Al or ESC-x >). These are keys on the keyboard that will
invoke the commands. The symbol * refers to the CTRL key, which must be held down
while depressing the key indicated immediately following the * symbol. For example,
AC means "hold down the CTRL key and depress the C key".

The display screen of the editor will normally have some portion of the displayed text
highlighted in reverse-video. In the diagrams that follow, characters that would appear in

reverse-video on the actual display are written in boldface.
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1. Invoking and Exiting the Editor

The editor is invoked by typing the name SPECDEF (or SPECDEF_SUN for the
Sun workstation version of the editor) at the operating system prompt with an optional
list of arguments consisting of one or more filenames of files to be loaded into the editing
buffers. Note that the editor name must be. typed in all capital letters. Invoking the editor
with no arguments causes editing to begin in the default buffer main with no associated
file. [Ref. 11: p. 90]

To terminate an editing session, leave the editor and return to the operating
system, the exit command < *C, ESC-*C, or AXAC > is executed. [Ref. 11: p. 91]

2. Display Screen

The editor’s display screen is divided into four horizontal stripes, or regions.
labelled from top to bottom, the title bar, the command line, the object pane, and the help
pane, as shown in Figure 22. The title bar is always highlighted and contains the name of
the current buffer displayed in the object pane. The command line echos commands and
error messages. The object pane displays all or a fragment of the current buffer’s
contents. The help pane, which takes up the last few lines of the display window, lists
the currently selected constituent, or node in the parse tree, plus the currently enabled
template transformations, if any. [Ref. 10: p. 21; 11: p. 91]

It should be noted that the horizontal lines separating the panes in all the diagrams
of this user’s manual are for explanation purposes only. They do not appear on the actual

video display terminal. The entire title bar, however, is always highlighted.
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Title Bar

Command Line

Object Pane

Help Pane

Figure 22
Display screen regions
On the Sun workstation version of the editor, the window will also have two
scroll bars for use with the mouse: one to the right of the object pane and one below the
object pane. These scroll bars control which portion of the buffer is visible in the object

pane. [Ref. 11: p. 91]

3. Current Selection vs. Locator

SPECDEF is a screen-oriented hybrid structure editor, since it permits editing the
structure of the displayed object through template insertions as well as allowing
character- and line-oriented operations on the text. A template of a component consists
of a pattern of keywords and placeholders where additional components can be inserted.
A Spec specification is created top down by invoking template transformations that insert
new components within the framework of previously entered templates. These template
transformations are the constructive commands that actually build the abstract syntax

tree. [Ref. 10: pp. 21,26]
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The current selection indicates the individual component of the specification at
which the editor is positioned. This is indicated on the screen display by highlighting all
components contained within the template of the current selection. The help pane also
tells the user which component is currently selected by displaying the message
"Positioned at <component>", where <component> is the phylum name of the
current selection. (A phylum can be thought of as a node in the abstract syntax tree.)
(Ref. 10: p. 21]

A character selection is displayed during text editing, indicating the specific
character positon within the highlighted selection where the next character can be
entered. On standard video display terminals, this position is denoted by an unhigh-
lighted character within the highlighted selection; on Sun workstations, the character
selection is indicated by an I-beam symbol within the highlighted selection. [Ref. 10: pp.
22,26]

The locator can be used to change the current selection and the character
selection. On standard video display terminals, the locator is the terminal’s cursor,
generally denoted by a blinking underbar or a blinking solid box. The locator can be
moved with the commands pointer-up < ESC-p >, pointer-down < ESC-d >, pointer-
left < ESC-b >, and pointer-right < ESC-f >. Even after the locator is moved to a new
component, the new selection is not made until the select command < ESC-@ > is

executed.
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e CAUTION: The locator does not automatically move to the new selection if the
user changes selection by executing the forward-with-optionals command < *M
or RETURN >. This can be very confusing to the user, since the cursor position
will not correspond to the actual position in the parse tree structure of the object
being edited.
On Sun workstations, the locator is denoted by an arrow. The locator’s positior is
changed by moving the mouse, and the select command is executed by clicking the

mouse’s selection button (the left button). [Ref. 10: pp. 22,300]

B. TEXT ENTRY

Selections are displayed according to the unparsing schemes, or display templates,
declared in the editor specification. Each production in the grammar has its own
template. The template for each selection is either editable as text or it is immutable.
Note that a selection declared as immutable may have elements within its template that
are not immutable. The selection must be moved to the editable part before text entry is
permitted. [Ref. 10: pp. 22-23]

If the current selection is not editable as text, any attempt to type a character is
rejected by the editor, sounds a warning signal, and displays the message "text entry not
permitted here" on the command line, as shown in Figure 23. The selection must be
changed to an editable component by either repositioning the locator and executing the
select command < ESC-@ >, or by executing one of the other structural selection by
traversal commands, such as forward-preorder < AN >, backward-preorder < *P >,
forward-with-optionals < M or RETURN >, forward-sibling < ESC-*N >, forward-
sibling-with-optionals < ESC-"M >, etc. (See Chapter 3 of [Ref. 11] for other

structural selection by traversal commands.) [Ref. 10: pp. 22-24; 11: pp. 101-102]
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Current butfer : main

text entry not permitted here

DEFINITION
END

Positioned at spec

Figure 23
Example of illegal attempt to enter text

When the current selection is editable, the entered text is captured into the rext buffer,
which is displayed in its proper position in the object pane. During editing, the selection
does not exist as structure, but instead exists as text. Operations within the selection are
defined on individual characters rather than on the structure. The text entry is terminated
by executing forward-with-optionals < AM or RETURN >, at which time syntactic
correctness is checked. [Ref. 10: p. 26]

If a syntax error is detected, a warning signal sounds, the message "syntax error"
appears on the command line, and the character selection is positioned at the last
character of the leftmost error that was detected. For example, in Figure 24, an attempt
was made to enter (p : passenger) as a formal argument to concept waiting, but the left

and right parentheses were not entered, resulting in a syntax error. [Ref. 10: p. 27]
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Current butfer : main

syntax error

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger
CONCEPT waiting p : passenger

END

Positioned at formal_arguments empty tieldlist

Figure 24
Example of a syntax error

To correct a syntax error, the user can either delete the entire text buffer by executing
the command delete-selection < *K > and then entering the correct text, or the text
buffer itself can be edited with any of a variety of commands described below. There
will be one character highlighted within the text buffer. This character selection can be
moved with the commands right < *F >, left < *B >, beginning-of-line < *A >, or end-
of-line < "E >. Once the character selection is at the desired position, the user can either
type additional characters to be inserted, or delete unwanted characters. Deletion
commands are delete-next-character < D > (which actually deletes the currently
highlighted character), delete-previous-character < DEL > (which deletes the character
to the left of the cursor), erase-to-end-of-line < ESC-d >, or erase-to-beginning-of-line

< ESC-DEL >. [Ref. 11: pp. 103-104,109]
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C. TEMPLATE INSERTION

When a new selection is made, the help pane is updated to indicate which component
is selected and any remplate transformations that are enabled. The template names listed
are actually commands used to invoke the respective transformations. [Ref. 10: p. 23]

Templates may be selected in three ways, dependent on which type of terminal is
being used. On standard video display terminals, the user must escape to the command
line by invoking the execute-command command < Al, TAB, or ESC-x >, and then
typing a sufficient number of characters of the desired template name to make the choice
unambiguous. If the prefix is ambiguous because an insufficient number of characters
are typed, the message "<prefix> is ambiguous” appears on the command line, where
<prefix> is the string that the user entered, as shown in Figures 25 and 26. On Sun
workstations or other mouse-equipped workstations, transformations can be invoked by
clicking on the transformarion-name in the help pane, or by choosing from a pop-up
menu of choices with the mouse’s structure-menu button (the right button). [Ref. 10: p.
23; 11: p. 147]

In the SPECDEEF editor, it is recommended to expand the size of the help pane by two
lines to be able to view all the possible transformations available for the phylum
expression. This is accomplished by executing the enlarge-help < ESC-*Xz >
command twice (once for each line of expansion). The default size of the help pane is
four lines, but phylum expression requires six lines, as shown in Figures 25 and 26.

[Ref. 11: p. 98]
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Current buffer : main

COMMAND: if

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean)
WHERE ALL(p : passenger , f : fioor ?)

<concept>
END
Positioned at expression quantity actname @ ~ &
| implies iff < > = <= >=
~= ~< ~> ~<= ~>= == ~== uminus
+ - * / mod - U append
in_exp star coliect range dot 0 parens measure
time delay period constant lit_type illegal if_then
Figure 25
Ambiguous template transformation selection

Current butfer : main
if is ambiguous
DEFINITION waiting_passenger

INHERIT elevator

INHERIT passenger

CONCEPT waiting (p : passenger)

VALUE (b : boolean)
WHERE ALL(p : passenger , { : floor ?)
<concept>

END
Positioned at expression quantify acthame @ ~ &
| implies iff < > = <= >=
~= ~< ~> ~C= ~>m == ~mx uminus
+ - * / mod o U append
in_exp star collect range dot 0 parens measure
time delay period constant lit_type  illegal ¥_then

Figure 26

Result of ambiguous transformation selection
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Some selections do not have any associated template transformations. This is
reflected in the help pane by listing only the current constituent. If an attempt is made to
initiate a template insertion when no transformations are enabled, or an attempt is made
to select a transformation other than those enabled, as in Figure 27, the editor will sound
a warning signal, display the message "<template-name> is unknown command",
where <template-name> is the character string typed by the user, and a help buffer will
be displayed listing all the system commands and their associated key-bindings available
at that location. as in Figure 28. The help buffer can be removed from the screen with the

delete-other-window command < #X1 >. [Ref. 10: p. 25]

Current butfer : main

- COMMAND: forall

S

 DEFINITION waiting_passenger |
INHERIT elevator ‘
| INHERIT passenger

. CONCEPT waiting (p : passenger ) |
VALUE (b : boolean
WHERE <quantitfier>{<field><restrictions :: ?)

. <concept> ,
(END !
‘ ]
i Positioned at quantifier all some number sum product I
' set max min union intersect ;

t

Figure 27
Attempt to initiate non-available transformation

The forward-with-optionals command < "M or RETURN > advances the selection
forward to the next component in preorder when executed alone, including stopping at

any optional placeholder inserted by the editor, such as in a list. However. when entering
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text or invoking a template transformation, the forward-with-optionals command
behaves differently. When a transformation is invoked, the selection moves to the first
placeholder (excluding optionals) in the transformed component. If no such placeholder
exists, then the selection remains at the same position where the transformation was
invoked. In such instances, it appears to the user that the forward-with-optionals

command must be executed twice to advance to the next selection. [Ref. 10: pp. 37-38]

Current butfer : main

fcrall is unknown command

%

' DEFINITION waiting_passenger
- INHERIT elevator

i INHERIT passenger

—

' Positioned at quantifier all some number  sum product
1 set max min union intersect

l
1
t

Current buffer : Heip

| advance-after-transtorm {none) j
advance-after-parse (none) I
apropos <ESC ?> ;
ascend-to-parent <ESC \» t
! backward-preorder <"P>
backward-sibling <ESC *P> i
backward-sibling-with-optionals <ESC B> |
backward-with-optionals < H> i
beginning-of-file <ESC <>
beginning-of-line <rA>

Figure 28

Unknown Command message and Help buffer
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D. SAVING AN EDITING SESSION

Edited objects are contained in a named buffer, such as the main buffer. To save the
object being edited, the buffer contents must be written to a file. The command used to
write such a file depends on whether the object was created directly during the current
editing session, or if it was a previously existing file loaded into the buffer as an
argument file when the editor was invoked, or was loaded with the command read-file
file-name < "X*F or *X*R >. [Ref. 11: 95-97]

There are two file formats in which an object may be saved: rext or structure. A text
file contains the display representation of the object as it would be viewed in the object
pane. A structure file contains the internal representation of the edited object. [Ref. 11:
p. 95]

An object that was saved as a structure file can be read back into the editor for re-
editing. The unparsing schemes that were in effect at the time the file was written are
restored, since they are saved as part of the file in these formats. A text file, however,
can only be read into the editor if it can be reparsed, because the unparsing schemes in
effect at the time the file was written are not saved as part of the file. If the text file
contains svntuctic errors, the file is read into the text buffer and the character selection is
positioned near the error. This would occur in the case where the user saved a file
immediately after attempting a syntactically incorrect text entry but before correcting the
error. [Ref. 11: p. 96]

When a previously existing file is read into a buffer, the format of the file becomes

associated with the buffer for subsequent write-current-file commands < *Xs >. This
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comnmand writes the current modified contents of the buffer back to the same file using

the same format as when the file was read into the buffer. [Ref. 11: p. 97]

If the edited object was created during the current editing session, or if the user
desires to save a previously existing file in a different format, execute the command
write-named-file file-name formart < AX*W >. The default format is structure. A pop-
up window appears at the bottom of the display screen. This window contains parameter
fields for the user to enter the filename of the file to save the buffer contents into, and the
format in which to save it. When the user wants to save his work for later re-editing, the
structure format should be selected. If the user wants to print the contents of the buffer,
the file should be saved as a text file, which can then be printed as any regular text file.
An example of this pop-up window is shown in Figures 29 and 30. Once the parameters
are selected, the command start-command < ESC-s > must be executed to actually
write the contents to the file. When the editor is done writing the file, the message
"Wrote <filename>" is displayed on the command line, where <filename> is the name

of the file being written. and the parameters window disappears. {Ref. 11: pp. 93,97]
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Current buffer : main

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger )
VALUE (b : boolean)
WHERE ALL(<field><restriction> :: ?)
<concept>
END

---Current Form : Wrhte File Form

l
IWRITE FILE: <file-name> FILE FORMAT: structure

|Positioned at _file_name

—

Figure 29
Pop-up write-named-file parameter window

Current buffer : main

1 7

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger )
VALUE (b : boolean)
WHERE ALL(<fieid><restriction> :: ?)
<concept>
END

---Current Form : Write File Form

JCOMMAND: text
IWRITE FILE: pass_def.spec FILE FORMAT: structure
|Positioned at _tile_type text structure

Figure 30
Specifying text format for Write File Form
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E. EDITOR SYSTEM COMMANDS
Many of the editor system commands are similar or identical to EMACS text editor
command names and standard key-bindings {Ref. 11: p. 90]. The more commonly used
commands have been described in the preceeding sections and are summarized below.
There are numerosus other less commonly used commands. Appendix D contains a
combplete list of the availablc editor commands. For a full descrintion of each command,
the reader is referred to Chapter 3 <t The Synthesizer Generator Reference Manual [Ref.
11}].
1. Executing Commands and Transformations
Every editor command has a name and zero or more key-bindings. There are four
ways to invoke a command. First, the keystrokes bound to the command may be typed.
Second, the command may be selected from a menu. Third, the command name may be
typed on the command line of a window. And lastly, on mouse-equipped systems only, a
mouse click may select an actuator bound to the command. All keystrokes other than the
command key-bindings or escaped text entered on the command line are interpreted as
textual insertions into the object being edited. [Ref. 11: p. 91]
The following commands are used to execute transformations or to get out of the

editor:

e exit < C, ESC-*C, "X*C >: Leave the editor and return to the shell. If any
buffers have been modified since their associated files were last written out, a
warning is issued in a pop-up window. To abort the exit, execute as cancel-
command < ESC-¢c >. To continue with the exit command, execute a start-
command < ESC-s >.
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o execute-command name < ", ESC-x >: Initiates the command mode and
redirects subsequent characters to the command line following the prompt
COMMAND:. Entry on the command line is terminated by the first blank,
carriage return, or other command key-binding. The command name need not be
typed in its entirety; any prefix of a command that uniquely identifies the
command is sufficient. Transformations take priority over built-in commands. If
the command has no parameters, it is executed immediately. Otherwise, a pop-
up window for parameters appears; after the parameters have been provided, the
comrnand should be initiated by executing start-command. If a command
parameter is either invalid or ambiguous, an error message is issued. Note that
the control character *l is TAB.

e start-command < ESC-s >: Initiate execution of a command with the
parameters contained in the current pop-up parameter form window. If not
currently editing a parameter form, start-command does nothing.

2. Buffers, Selections, and Files

Objects that are being manipulated in the editor are contained in a collection of
named buffers. Each file being edited is typically read into a distinct buffer. The buffer
is then associated with the given file until either a different file is read into that buffer, or
the given buffer is written out to a different file. [Ref. 11: p. 95]

Two file formats are supported: text and structure. Text files contain the display
representation of a term. Structure files contain ar. internal representation of a term. A
term is a derivation tree of the object being manipulated. [Ref. 11: p. 95]

Terms written as structure files can be read back into the editor with the identical
structure as when the file was saved. Text files, however, can only be read back into the

editor if the text can be reparsed because the unparsing schemes in effect at the time the

file was written are not saved within the file. [Ref. 11: p. 96]
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The following commands are used to read or write files:

o read-file file-name < *X*F, AX*R >: Reads the named file into the current
buffer, deleting the previous contents of that buffer. The buffer becomes
associated with that file for subsequent write-current-file commands. If the
current buffer is already associated with a file that has not been written since the
buffer was last updated, you must answer yes to the question Overwrite buffer?
before the read will be executed. If the given file is text, it must be syntactically
correct with respect to the input syntax of the given editor. If syntactically
incorrect, the file is read into the text buffer with the cursor positioned near the
error. If the given file is a structured file, the term contained in the file and the
term currently contained in the buffer must be in the same phylum.

e write-current-file < AXs >: Write the value of the buffer displayed in the
current window to its associated file in the current format associated with the
buffer.

e write-named-file file-name format < "X*W >: Write the value of the buffer
displayed in the current window to the given file in the given format. The
default format--structure--can be changed by selecting the formar field of the
pop-up parameter window and invoking the text transformation.

3. Creating, Deleting, and Resizing Windows and Panes

In editors generated for standard video display terminals, windows are non-
overlapping, are arranged in horizontal stripes across the screen, and are cyclicly ordered
from top to bottom for the purpose of the next-window and previous-window
commands. [Ref. 11: p. 97]

In editors generated for workstations with high-resolution, bitmapped displays
(e.g., Sun workstations), resizable and overlapping windows with scroll bars are
supported. [Ref. 11: p. 98]

The following commands manipulate the windows and display:

¢ delete-other-windows < X1 >: Delete all windows other than the current one.

¢ next-window < *Xn >: Switch to the next window on the screen. (Video
display terminals only.)
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e previous-window < *Xp >: Switch to the previous window on the screen.
(Video display terminals only.)

o enlarge-help < ESC-*Xz >: Increase the size of the help pane of the current
window by one line.

e redraw-display < AL >: Refresh the screen image to remove any spurious
characters.

4. Changing the Structural Selection by T'raversal of the Edited Term

The current selection can be changed by moving through the structure of the
abstract-syntax tree (e.g., in preorder, reverse preorder, by moving to the parent, etc.). If
such a motion would cause the selection to leave the currently displayed text in the
window, the object is scrolled automatically to keep the new selection within the
window. [Ref. 11: p. 101]

Some commands cause the editor to automatically insert instances of optional
components into the abstract syntax tree (e.g., forward-with-optionals < *M or
RETURN >). The placeholder for an optional element becomes the current selection. If
the selection is advanced beyond an inserted optional element, and that optional element
is still only a placeholder, that placeholder is removed from the abstract syntax tree (and
consequently from the display). Other commands that change the selection ignore any
optional components and therefore do not insert an instance of such elements in the
abstract syntax tree. [Ref. 11: p. 101]

The following commands are used to move the selection:
o forward-preorder < "N >: Change the selection to the next resting place in a

forward preorder traversal of the abstract-syntax tree. Do not stop at place-
holders for optional constituents.
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e backward-preorder < *P >: Change the selection to the previous resting place
in a forward preorder traversal of the abstract-syntax tree. Do not stop at
placeholders for optional constituents.

o right < AF >: If there is no text buffer, right is the same as forward-preorder.
See Section LE.S for the meaning of right when there is a text buffer.

o left < AB >: If there is no text buffer, left is the same as backward-preorder.
See Section L.E.5 for the meaning of left when there is a text buffer.

o forward-with-optionals < AM >: Change the selection to the next resting place
in a forward preorder traversal of the abstract-syntax tree. Stop at placeholders
for optional constituents. Note the M is RETURN.

¢ end-of-file < ESC-> >: Change the selection to the rightmost resting place in
the abstract syntax tree.

5. Changing the Character Selection by Traversal of the Text Buffer

The text buffer contains text being entered or re-edited. This buffer is displayed
in its proper position within its enclosing structural context. One character within the
text buffer is selected, shown by a highlight. This character selection can be moved
within the text buffer by normal horizontal and vertical "cursor-motion" commands. If
the character selection is moved beyond the boundaries of the text buffer, the contents of
the text buffer are submitted for syntactic analysis and translation. Within the text buffer,
the structural-motion commands forward-preorder, backward-preorder, right, and
left, which were previously defined for moving the component selection, have been
overloaded and are also used to move the character selection down, up, right, and left,

respectively. [Ref. 11: p. 103]
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The following commands are used to change the character selection within the

text buffer:

o forward-preorder < *N >: Move the character selection one position down. If
already at the last line of the text buffer, this command is interpreted as forward-
after-parse.

e backward-preorder < *P >: Move the character selection one position up. If
already at the first line of the text buffer, this command is interpreted as
backward-preorder, as described in Section LE.4, provided the text is
syntactically correct.

¢ right < *F >: Move the character selection one position to the right. If already
at the rightmost character of a line, the character selection advances to the first
character of the next line of the text buffer. If already at the rightmost character
of the last line of the text buffer, the command is interpreted as forward-after-
parse.

o left < "B >: Move the character selection one position to the left. If already at
the leftmost character of a line, the character selection advances to the last
character of the previous line of the text buffer. If already at the leftmost
character of the first line of the text buffer, the command is interpreted as
backward-preorder.

¢ beginning-of-line < "A >: Move the character selection to the beginning of the
line.

* end-of-line < "E >: Move the character selection to the end of the line.

e forward-after-parse (no key-binding): If textual entry is terminated by
forward-preorder, then upon successful analysis the forward-preorder
command is replaced by forward-after-parse. Let ¢ be the subterm or sublist
that has replaced the selection as a result of textual input. If no existing place-
holder occurs within 1, then forward-after-parse stops at the first resting place

beyond 1. Forward-after-parse never inserts optional placeholders either in ¢ or
beyond ¢.

6. Moving the Locator on the Screen
The commands described in this section apply only to editors generated for
standard video display terminals (for editors generated for workstations equipped with a

mouse, the mouse can be used to point anywhere in the object pane, and clicking the
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mouse will change the current selection). It is important to note that the locator is
distinct from the selection. The locator identifies a point on the screen and not a point in
the buffer (i.e., the locator does not necessarily agree with the selection in the parse tree).
[Ref. 11: p. 105]
The following commands move the locator (i.e., the cursor):
¢ pointer-left < ESC-b >: Move the locator one character to the left. If already
in column one of the object pane and not already at the leftmost scroll position,

scroll the window.

¢ pointer-right < ESC-f >: Move the locator one character to the right. If
already at the right border of the object pane, scroll the window.

¢ pointer-up < ESC-p >: Move the locator one character up. If already at the top
of the object pane and not already at the uppermost scroll position, scroll the
window.

¢ pointer-down < ESC-d >: Move the locator one character down. If already at
the bottom of the object pane, scroll the window.

7. Structural Editing
Structural modifications follow a cut-and-paste paradigm, similar to block-edit
functions found in many text editors. Only whole, well-formed substructures can be

removed and inserted. [Ref. 11: p. 108}

The following commands are used to move, copy, or delete entire subtrees of the
overall abstract syntax tree:

o cut-to-clipped < "W >: Move the selection of the current buffer to the distin-
guished buffer CLIPPED. The removed selection is replaced by a placeholder,
which becomes the new selection. The previous contents of CLIPPED are lost.

e copy-to-clipped < ESC-*W >: Copy the selection of the current buffer to buffer
CLIPPED. The previous contents of CLIPPED are lost.




e paste-from-clipped < *Y >: Move the contents of buffer CLIPPED into the
buffer at the current selection, which must be a placeholder. In CLIPPED, a
placeholder term replaces the previous contents.

¢ copy-from-clipped < ESC-*Y >: Copy the contents of buffer CLIPPED into
the buffer at the current selection, which necessarily must be a placeholder. The
contents of CLIPPED are left unchanged.

¢ copy-text-from-clipped < ESC-*T >: Copy the contents of buffer CLIPPED,
as text, into a text buffer at the current selection immediately preceding the
character selection. The contents of CLIPPED are left unchanged.

o delete-selection < *K >: Move the selection of the current buffer to the
distinguished buffer DELETED. The selection becomes a placeholder. The
previous contents of DELETED are lost.

8. Textual Editing

Textual insertion and textual re-editing are permitted for some components of the
language, as discussed in Section LE.S above.

If a textual insertion is permitted at a placeholder, you merely begin to type; this
causes the text of the placeholder to disappear and the keystrokes are echoe. .a the text
buffer, which is displayed in place on the screen.

If textual re-editing of an existing structure is desired and is permitted, the
character selection is positioned at the desired place in the text buffer whereupon the user
can begin to either tvpe or erase characters. If the current selection was established by
tree traversal, as described in Section 1.LE.4 above, then the textual-insertion point is in
front of the character at which the locator pointed when the select-start was executed.

[Ref. 11: p. 109)




The following commands are used to edit text within the text buffer:

e delete-next-character < *D >: Delete the current character selection. If the
character selection is at the end of a line in the text buffer (other than the last
line), then the current line and the next line are joined into one line.

e delete-previous-character < DEL >: Delete the character to the left of the
character selection. If the character selection is at the beginning of a line in the
text buffer (other than the first line), then the current line and the previous line
are joined into one line.

e erase-to-end-of-line < ESC-d >: Erase from the character selection to the end
of the line, including the character selection.

¢ erase-to-beginning-of-line < ESC-DEL >: Erase from the beginning of the line
to the character selection, not including the character selection.

o delete-selection < *K >: Delete the entire line.

F. SAMPLE EDITING SESSION

We present a sample editing session using the standard video display terminal version
of SPECDEF. We will create a small specification file, save it for later re-editing, recall
the file into the editor, modify it, and save it for printout.

Some terminology that is used throughout the remainder of this section needs to be
clarified:

e Recall that a phvium can be thought of as a node in the abstract syntax tree.

* A completing term is the default representation of a phylum. Completing terms
can be replaced through template transformations, if any are enabled. The
completing term for some phyla are user prompts, consisting of the phylum name
enclosed in angle brackets, e.g., <formal_parm>. Other phyla have template
patterns with keywords for the respective phylum.

e A placeholder term is also a default representation of a phylum. For non-
optional phyla, the placeholder term is identical to the completing term. But for
phyla that are declared as optional, the placeholder is usually a user prompt, as
described above, indicating where a transformation can be inserted if desired.
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In the diagrams that follow, recall that text that would appear as highlighted text on
an actual video display is printed in boldface.

We invoke the editor by typing SPECDEF at the Unix prompt with no arguments, as
we will be creating the specification in this editing session. The initial screen presented
to the user has a blank object pane, as shown in Figure 31. Note that the help pane

indicates the selection is positioned at phylum start.

Current buffer : main

i Positioned at stant

|
i
l
|

Figure 31
Inidal Display Screen

There are no template transformations enabled for phylum start, so we simply
advance the selection by executing forward-with-optionals < "M or RETURN >. After
depressing the RETURN key, we are presented with the display as shown in Figure 32.
Phylum spec is declared as an optional list phylum, since we may have zero or more
occurrences of this construct according to the Spec grammar. Therefore, what we see in
the display is the placeholder term for phylum spec, which happens to be the completing

term for phylum module, the first argument for phylum spec.
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Current butfer : main

DEFINITION

END

Positioned at spec

Figure 32
Advancing the selection to phylum spec

As we advance the selection by executing forward-with-optionals < *M or
RETURN > repeatedly to cycle through phyla module, interface, and formal_name,
the only changes that occur to the display screen are the name of the current selection
listed in the help pane, and the disappearance of the highlighting of the keywords
DEFINITION aud END as the selection reaches interface. The next selection is
identifier, at which point we decide to enter the name of our module,

waiting_passenger, as shown in Figure 33.

Current buffer : main

DEFINITION walting_passenger

END

Positioned at identifier

Figure 33
Entering text at node identifier




The text entry is terminated by entering a carriage return. This causes the entered text
to be checked for syntactic correctness; it is accepted and inserted in the abstract-syntax
tree at the node for phylum identifier. The selection is advanced to formal_parameters,
as shown in Figure 34.

Here we have the first occurrence of a completing term/placeholder term/user prompt,
the string <formal_parm>, to prompt the user that some acceptable form of formal
parameters should be entered here. We also have two template transformations enabled
named empty and fieldlist. In this case we do not want any formal parameters, so we
invoke the transformation empty by first executing execute-command < *| or TAB >;
when we depress the TAB key, the prompt COMMAND: appears on the command line.
We only need to enter enough letters of the transformation name to make our choice
unambiguous; in this case, simply typing € is sufficient to differentiate between empty

and fieldlist. After typing the e, the screen appears as in Figure 35.

-

E Current buffer : main

DEFINITION waiting_passenger<formal_parms

|
END

Positioned at formal_parameters empty tieldlist

Figure 34
Display after parsing the module name
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Current butfer : main

COMMAND: e

DEFINITION waiting_passenger<formal_parm>

END

Positioned at formal_parameters empty fieldlist

Figure 35
Invoking template transformation empty

Any of the several commands that move the selection will terminate the template
command. We use forward-with-optionals < "M or RETURN >. The template for an
empty formal_parameter list is executed, which replaces the placeholder term
<formal_parm> with a null.

The selection is advanced, and the optional phylum inherits is selected. Since this
phylum is optional, the completing term (a null statement) is replaced on the display with
the placeholder term, the string <inherit>. There are two INHERIT clauses we wish to
add, so we invoke execute-command twice, each time typing a for addinherit to display
the templates for two INHERIT clauses, as shown in Figure 36. Note that the selection is
still positioned at the <inherit> prompt on the first line, since the abstract-syntax rule for
inherits inserts an instance of inherits at the beginning of each clause until a null clause
is selected. To get rid of this prompt and advance to the first INHERIT clause, we must

invoke the transformation empty on the command line.
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Current buffer : main

DEFINITION waiting_passenger<inherit>
INHERIT <hide><rename>
INHERIT <hide><rename>

END

Positionad at inherits empty addinherit

Figure 36
After invoking transformation addinherit twice

After invoking transformation empty, the selection is advanced to actual_name.
We type in the name elevator, the name of the module we wish to inherit. Even though
we did not include any actual parameters after the actual name elevator, it is still
accepted, since actual parameters can be empty. Note that we could have advanced the
selection one level lower, to phylum identifier, before entering the name elevator, but
then we would also have had to invoke the transformation for an empty actual parameter
list and an empty actual argument list. By entering the text at phylum actual_name, we
have saved some time and effort by not having to bother with the empty parameter and
argument constructs. Our display now appears as in Figure 37,

We do not wish to hide or rename any concepts from the inherited module elevator,
so for each of those selections in turn we invoke the empty template transformation the

same way we did before.
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Current buffer : main

DEFINITION waiting_passenger
INHERIT elevator <hide><rename>
INHERIT <hide><rename>
END
Positioned at hide empty addhide

Figure 37
After entering inherited module name elevator

Note that after invoking execute-command and entering an e followed by a carriage
return, the help pane still indicates the selection is positioned at hide ( also the same for
rename). This is because the hide (rename) that was replaced by a null statement was
the optional selection that was inserted by the editor when we executed forward-with-
optionals. When the null statement fills that node, the selection moves back up the
abstract-syntax tree to the hide (rename) within the template for inherits. By simply
exgeuting forward-with-optionals < *M or RETURN >, the placeholder <hide>
(<rename>) is replaced by the completing term (- null statement) and the selection is
advanced.

The same process is performed for the second INHERIT clause, with the name
passenger for the inherited module. Again, we do not wish to hide or rename any
concepts from the inherited module passenger, so we invoke the empty transformation

for each of these constructs.
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The selection is now positioned at impornts, another optional phylum. The place-
holder term replaces the completing term on the display, and our screen looks like that

shown in Figure 38.

Current butfer : main

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger
<import>

END

Positioned at imports empty addimport

Figure 38
Selection positioned at phylum imports

We do not have any concepts we wish to import, so we invoke the empty trans-
formation. As we saw with phyla hide and rename, we must execute forward-with-
optionals after completing the transformation to advance the selection to export. We
will not export any concepts, so the identical process is performed for export as we did
for imports. |

The selection is now positioned at concepts, which is declared as an optional list
phylum. The completing term for the first argument of concepts is displayed, which is
the prompt <concept> from phylum concept, as shown in Figure 39. Note that the help
pane indicates we are positioned at concepts, but we still have two template transfor-

mations enabled, type and value, which are associated with phylum concept. This
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feature minimizes the distinction between a singleton sublist and the list item itself, and

is true for any list phylum. [Ref. 10: p. 67]

Current buffer : main

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger
<concept>

END

Positioned at concepts type value

Figure 39
Prompt for entering a concept

We wish to add a concept that returns a value, so we invoke the execute-command
command < *! or TAB > and enter v and a carriage return to invoke the value
wansformation. We are presented with the template for a concept that returns a value, as
shown in Figure 40.

The selection is positioned at formal_name, the first argument for phylum concept.
After executing forward-with-optionals, the selection is positioned at identifier. We
enter the name of our concept, waiting, and are presented with the display as shown in
Figure 41.

We do not have any formal parameters, so we invoke the transformation empty.
However, we do have a single argument to concept waiting. With the selection at
formal_arguments, we invoke the transformation fieldlist. This leaves the selection
positioned at field_list with transformation choices single and multiple. We invoke

transformation Single and are presented with the display as shown in Figure 42.
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Current butfer : main

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT <«formal_args> <where>
VALUE <formai_args>
<where>

END

Positioned at formal_name

Figure 40
Template for a concept returning a value

Current buffer : main

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting<formal_parms<formal_args> <where>
VALUE <formal_args>
<where>

END

Positioned at formal_parameters empty fieldlist

Figure 41

Display after entering the concept name waiting
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Current butfer : main

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting(?) <where>
VALUE <formal_args>
<where>

END

Positioned at tield namelist  collection

Figure 42
After invoking a single field_list

As we did with actual_name, we will enter the complete text required to make up a
field, which consists of a name_list and a type_spec. We type p : passenger
(including the space either side of the colon) and enter a carriage return. Note that we
could have invoked the transformation namelist, which would have necessitated our
entering the name_list and type_spec separately. As before, we elected to enter the
complete construct at the field node to save time and keystrokes.

The selection is now positioned at the first <where> prompt, with two transfor-

mations enabled, empty and addwhere. The display appears as in Figure 43.

138




Current buffer : main

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting(p : passenger) <where>
VALUE <formal_args>
<where>

END

Positioned at where empty addwhere

Figure 43
After entering the formal argument (p : passenger)

There is no WHERE clause that applies to the formal arguments, so we invoke
execute-command, type € and a carriage return to invoke the empty transformation.
We must also execute forward-with-optionals to remove the <where> prompt and
advance to the next selection.

The selection is now positioned at the second occurrence of formal_arguments, the
prompt <formal_args> after the keyword VALUE. Two transformations are enabled,
empty and fieldlist. We invoke the fieldlist transformation, which replaces the string
<formal_args> with (<field>). The help pane indicates the current selection is field_list
with two transformations enabled, single and multiple. We invoke the single
transformation, and are presented with a screen as shown in Figure 44. Note that the

completing term/placeholder term for a field (i.e., ? ) has replaced the <field> prompt.
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Current buffer : main

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting(p : passenger)
VALUE (?)
<where>

END

Positioned at field namelist collection

Figure 44
After invoking the single ransformation for field_list

Just as before, we can enter the entire field construct of a name_list and a
type_spec separated by a free-standing colon. We enter b : boolean and a carriage
return to fill the field node of the parse tree.

At this point, we are called away by our boss to a meeting and we wish to save our
work to resume later. We execute the command write-named-file < AX*W >; a pop-up
window overlays the bottom of the display screen for us to enter the filename and format
parameters to the write-named-file command, as shown in Figure 45.

The selection is positioned at _file_name in the Write File Form window. We type
in the desired name (including any extension); for this example we choose the name
waitpass.spec. Just as in the object pane, we terminate text entry by entering a

carriage return. The selection advances to _file_type with two transformations enabled,
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text and structure. The default file format, structure, is already highlighted in the FILE
FORMAT: field. If you plan on doing more editing on a file, the recommended format in
which to save the file is structure. Text format is used to save the display as a printable
6. Since the default format is the one we want, no further entry is required. To
complete the execution of the write-named-file command with our selected parameters,
we must execute start-command < ESC-s >. This causes the command line to echo

"Wrote waitpass.spec”, and the actual file to be written to the file system.

Current buffer : main

|
1

' DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

i

| CONCEPT waiting(p : passenger)
VALUE (b : boolean)

<where>

END

---Current Form : Write File Form--------

IWRITE FILE: <flle-name> FILE FORMAT: structure I
|Positioned at _file_name |

Figure 45
Pop-up Write File Form window
Note that we are still in the editor. To exit the editor, we simply type *C, which
deactivates the editor and returns us to the Unix shell.
To recall our saved file back into the editor for further editing, we have two choices:

we can include the filename waitpass.spec as an argument to SPECDEF when starting
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up the editor, or we can start SPECDEF with no arguments and then execute the read-file
command < *X*R or *X*F >, which will cause a pop-up window to appear, similar to
the Write File Form window when we saved the file, in which we enter the filename. In
this example, we choose the former method.

The inidal display this time includes the filename waitpass.spec in the ttle bar, the
message "Read waitpass.spec” on the command line, as much of the structure that will
fitin the object pane (in this case the entire file), and the indication in the help pane that

we are positioned at start. Figure 46 shows this display.

Current buffer : waltpass.spec

Read waitpass.spec

DEFINITION waiting_passenger
INHERIT eievator
INHERIT passenger

CONCEPT waliting(p : passenger)
VALUE (b : boolean)
<where>

END

Positioned at start

Figure 46
Reading an existing file into the editor

There are, again, two choices on how to proceed: we can either advance the selection
through the entire parse tree using forward-preorder < *N > or forward-with-
optionals < "M or RETURN >, or we can use end-of-file < ESC-> > to position the

selection at the rightmost leaf in the parse tree. We choose the latter option to save time,
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which now positions the selection where we left off during the previous editing session,
at the second <where> prompt within the construct for concept.

We invoke the transformation addwhere, which replaces the placeholder <where>
with the template for a WHERE clause. The selection is advanced to expression_list
with two transformations enabled, single and multiple. We invoke the single transfor-

mation, as shown in Figure 47.

Current buffer : walitpass.spec

COMMAND: s

| DEFINITION waiting_passenger
. INHERIT elevator
. INHERIT passenger

CONCEPT waiting{p : passenger)
VALUE (b : boolean)
WHERE <expression_list>

END

|
|
|
i

ositioned at expression_list single multiple

-

Figure 47
Invoking the single transformation for expression_list

The selection 1s now positioned at expression. In the SPECDEF editor, phylum
expression has more template transformations available than can be listed in the default
size of the help pane (4 lines). To be able to see all possible transformation names, the
help pane must be enlarged by two lines. This is done by executing the enlarge-help
command < ESC-*Xz > twice, once or each line of enlargement. When this is done, the

screen will appear as in Figure 48. Notice that many of the transformation names are

143




“

symbolic rather than alpha-numeric. Note also the completing/placeholder term for

expression, the symbol ?, which stands for an undefined expression.

Current butfer : waitpass.spec

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : booiean)

WHERE ?
END
Positioned at expression quantify actname @ ~ &
| implies iff < > = <= >=
~= ~< ~> ~<= ~>= == ~z= uminus
+ - * / mod * U append
in_exp star collect range dot {0 parens measure
time delay period constant lit_type iliegal if_then

Figure 48
Expanded Help Pane for expression’s transformations

The expression we wish to enter is a quantified logic expression, so we begin by
invoking the quantify wansformation. The placeholder ? is replaced by the template for
a quantified expression, as shown in Figure 49.

We invoke the all ransformation, which replaces the placeholder <quantifiers with
the lexeme ALL and advances the selection to field_list. In this example, we want a
multiple field_list, so we invoke the multiple wansformation. The resulting display

appears as in Figure 50.
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Current buffer : waitpass.spec

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
‘YALUE (b : boolean)
WHERE <quantifier>(<fieid><restriction> :: ?)

END
Positioned at quantifier all some number sum product
set max min union intersect

Figure 49
After invoking the quantify transformation for expression

rCurrent buffer : waitpass.spec

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean )
WHERE ALL(<field> ?<restricticn> :: ?)

END

Positioned at field_list single multiple

Figure 50
After selecting multiple transformation for field_list

We now address each element of the field_list separately. For the first element,
which is itself a field_{ist, we now invoke the single transformation, which replaces the

placeholder <field> with the symbo! ? and positions the selection at field.
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As we have done previously, we will enter the entire construct here to save time and
keystrokes; we enter p : passenger followed by a carriage return. This enters the text
and advances the selection to the second placeholder for phylum field, the second ?.
Here we enter f : floor and a carriage return. The selection is now advanced to

restriction, as shown in Figure 51.

Current buffer : waitpass.spec

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean)
WHERE ALL(p : passenger , f : floor<restrictions :: 7)

END

Positioned at restriction empty suchthat

Figure 51
After entering a multiple field_list

We do not have any restrictions on these elements, so we invoke the empty transfor-
mation. This places the selection at expression following the bind (i) symbol.

The expression we wish to have apply here is a combination of several "and’d"”
expressions that imply a predicate expression. We start by invoking the & transfor-
mation. This replaces the ? with the string ? & ?. We are still positioned at expression,
so we now invoke the actname transformation by executing the execute-command
command < *l or TAB > and then typing ac, which is sufficient to make our choice

unambiguous. The first placeholder for expression is replaced by the placeholder
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<actual_arg>, and the selection is advanced to actual_name. We enter the name of the
predicate we wish to apply here, waiting. The selection is advanced to
actual_arguments, with two transformations enabled, empty and arglist. We invoke

the arglist transformation and are presented with the display as shown in Figure 52.

Current butfter : waitpass.spec

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean)
WHERE ALL(p : passenger , f : floor :: waiting(<arg») & ?)

END

Positioned at arg_list single multiple

Figure 52
After invoking arglist ransformation for actual_arguments

We enter the single argument p. We then advance the selection to expression using
forward-with-optionals < "M or RETURN >, and invoke the & transformation once
more. Proceeding similarly to the sequence described above, we enter the various text
elements until we have built the expression at(p , ).

Advancing the selection again to expression, we now invoke the implies transfor-
mation. With the selection positioned at the ? on the left side of the => symbol, we first
invoke the ~ transformation (the symbol ~ means "not"). Then we proceed similarly to

the sequence stated previously until we have built the expression ~button_lit(f).
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Once more advancing the selection, we now complete the expression on the right side
of the => symbol until we have built the expression pushes_button(p , f). Our concept

waiting is now complete, as shown in Figure 53.

Current butfer : waitpass.spec

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean)
WHERE ALL(p : passenger , { : floor
o waiting(p) & at(p, f) & ~button_lit(f) => pushes_button(p, f))
<concept>

END

Positioned at concepts type value

Figure 53
The completed concept waiting

Following a similar procedure, we add a second concept, pushes_button. The
complete module waiting_passenger now looks like Figure 54.

We are now ready to save our module for printout. We invoke the write-named-file
command < *X*W > as before. The current filename waitpass.spec already fills the
_file_name field because the filename is associated with the current buffer, so we simply
enter a carriage return. This time we want to save the file in text format so we can print it
out. We invoke execute-command < #I or TAB > and type t for the text transformation.

Finally, we execute start-command < ESC-s > to actually write the file.
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Current buffer : waitpass.spec

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean )
WHERE ALL(p : passenger , { : floor
:: waiting(p) & at(p, f) & ~button_lit(f) => pushes_button{p, f))

CONCEPT pushes_button(p : passenger, { : floor)
VALUE (b : boolean)

END

Positioned at where empty addwhere

Figure 54
The complete module waiting_passenger

Since we used the same filename as the previously saved structure formatted file, the
contents of that file are overwritten by the text format of the current buffer. Now we can
exit the editor by executing the exit command < AC >.

The file waitpass.spec is now saved as a standard ASCII file that appears the same
as the display in the object pane. The file can be printed as you would any text file.

If the reader is> sull unsure about any of the commands that were used in this sample
editing session, review Section L.E on the commonly used commands. For a complete
list of all commands available with full descriptions, see Chapter 3 of The Synthesizer

Generator Reference Manual {Ref. 11: pp. 90-111].
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APPENDIX D

LIST OF EDITOR COMMANDS

The following is a complete list of all the available editor commands for any editor
created by the Synthesizer Generator. Most of the commands have an associated key-
binding. Those that don’t have a key-binding are indicated by (none). See Chapter 3 of

The Synthesizer Generator Reference Manual for a full description of each command.
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[Ref. 11]
advance-after-transform (none)
advance-after-parse (none)
apropos <ESC-?>
ascend-to-parent <ESC-\>
backward-preorder <"P>
backward-sibling <ESC-*P >
backward-sibling-with-optionals < ESC-*B >
backward-with-optionals <*H >
beginning-of-file <ESC-<>
beginning-of-line <*A>
cancel-command <ESC-c >
column-left (none)
column-right (none)
copy-from-clipped < ESC-Y >
copy-text-from-clipped <AT>
copy-to-clipped < ESC-"W >
cut-to-clipped < W >
delete-next-character <*D>
delete-other-windows <AX1>
delete-previous-character <DEL >
delete-selection <*K>
delete-window <Xd >
dump-off (none)
dump-on (none)




break-to-debugger
alternate-unparsing-on
alternate-unparsing-toggle
end-of-file

end-of-line

enlarge-help
enlarge-window
erase-to-beginning-of-line
erase-to-end-of-line
execute-command
execute-monitor-command
exit

extend

extend-start

extend-stop
extend-transition
forward-after-parse
forward-preorder
forward-sibling
forward-sibling-with-optionals
forward-with-optionals
help-off

help-on

illegal-operation
insert-file

left

list-buffers

new-buffer

new-line

next-line

next-page

next-window

page-left

page-right
paste-from-clipped
pointer-bottom-of-screen
pointer-down
pointer-left
pointer-long-down
pointer-long-left
pointer-long-right
pointer-long-up
pointer-right
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(none)
(none)
<ESC-e>
<ESC-> >
<?E >

< ESC-"Xz >
<Xz >

< ESC-DEL >
<ESC-d >
<Al>
<Xl >
<>
<ESC-(>
(none)
(none)
<ESC-X >
(none)
<”N >

< ESC-*N >
< ESC-*M >
<*M>
(none)
(none)
<G>

< XM >
<"B>

< AX"B >
(none)
<A >
<M >
<AV >
<*Xn>
<ESC-{>
<ESC-} >
<Y >
<ESC-. >
<ESC-n>
<ESC-b>
(none)
(none)
(none)
(none)
<ESC-f >




pointer-top-of-screen
pointer-up
previous-line
previous-page
previous-window
read-file
redraw-display
repeat-command
return-to-monitor
right
scroll-to-bottom
scroll-to-top
search-forward
search-reverse

select

select-start
select-stop
selection-to-left
selection-to-top
select-transition
set-parameters
show-attribute
shrink-help
shrink-window

spill
split-current-window
start-command
switch-to-buffer
text-capture

undo
alternate-unparsing-off
visit-file
write-attribute
write-current-file
write-file-exit
write-modified-files
write-named-file
write-selection-to-file
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< ESC-, >
<ESC-p>
<ESC-z>
< ESC-v>
<*Xp>
<*X*R >
<M. >
<ESC-r>
<* >

<A F>
(none)
(none)

< ESC-*F >
< ESC-*R >
< ESC-@ >
(none)
(none)
(none)
<ESC-1>
<ESC-t>
(none)
(none)

< ESC-AX*Z >
< "XA >
(none)
<*"X2 >
<ESC-s>
<*Xb >
(none)

< XU >
(none)

< "XAV >
(none)
(none)

< "XAF >

< AXAM >

< "XAW >
(none)
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